AN ESTIMATE FOR HEXAGONAL CIRCLE PACKINGS

ZHENG-XU HE

1. Introduction

Let P be a circle packing in the complex plane C, i.e., a collection of circles in C with disjoint interiors, and let c_0 be a circle of P. Suppose that for some positive integer $n \ge 2$, the n generations P_n of P about c_0 (defined successively by $P_0 = \{c_0\}$, $P_k = \{c \in P; c \in P_{k-1} \text{ or } c \text{ is tangent to some circle of } P_{k-1}\}$, $k \ge 1$) is combinatorially equivalent to the n generations H_n of a regular hexagonal circle packing about one of its circles. Then the ratio of radii of any two circles of P tangent to c_0 is bounded by $1 + s_n$, where s_2, s_3, \ldots is some decreasing sequence of positive numbers. We will denote by s_n the smallest possible constant with this property. In [7], B. Rodin and D. Sullivan showed that any circle packing which is combinatorially equivalent to an infinite regular hexagonal circle packing is also regular hexagonal, and as a consequence, s_n converges to 0. They conjectured that $s_n \le C/n$ for some constant C. In this paper, we will prove this conjecture. This estimate for s_n is best possible as (we will see later) $s_n \ge 4/n$.

One may use our result to estimate the rate of convergence of the circle packing solutions f_{ε} to the Riemann Mapping Theorem given in [7], where ε is the size of the preimage circles, and of the approximating solutions f_{δ} to the Beltrami equations constructed in [4]. This shows that these solutions are constructive. Moreover, for the circle packing solutions f_{ε} of [7], we may combine with [6, Theorems 5 and 8] to conclude that the rate of convergence on compact subsets is of order at most $\varepsilon^{\alpha/8}$ for any fixed $\alpha < 1$, and their derivatives converge in L^{∞} on compact subsets.

The proof of $s_n \leq C/n$ will be given in §2 with the assistance of an area estimate on the union of the images of the interstices bounded by the circles of H_n under the Schottky group generated by inversions of the circles of H_n (Lemma 2.2). In §3 we will prove this estimate. The argument also leads to vanishing of the Lebesgue measure of the limit

Received March 14, 1989 and, in revised form, August 28, 1989. The author was supported in part by AFOSR-F49620-87-C-0117.