POSITIVE RICCI CURVATURE ON THE CONNECTED SUMS OF $S^n \times S^m$

JI-PING SHA & DA-GANG YANG

0. Introduction and the main results

The topological implications of positive Ricci curvature turned out to be much weaker than what one has expected. For example, it has been shown in [18] that there is no upper bound on the total Betti number for complete Riemannian manifolds with Ric > 0 in a fixed dimension, and the manifold can be of infinite topological type if it is noncompact (compare [1], [12]). In this paper, we prove some existence theorems concerning positive Ricci curvature. It also fills out a gap in [18] in dimensions 4, 5, and 6. Throughout this paper, both n and m will be integers ≥ 2 and we will work in the smooth category. The main results are stated in the following theorems.

Theorem 1. The connected sum $\#_{i=1}^k S^n \times S^m$ of k-copies of $S^n \times S^m$ carries a metric with Ric > 0 for all $k = 1, 2, 3, \dots$, where S^p is the standard p-dimensional sphere.

Let M^{m+1} be an (m+1)-dimensional complete Riemannian manifold with Ric > 0. Set

(1)
$$M_k^{n,m} \equiv S^{n-1} \times \left(M^{m+1} \setminus \coprod_{i=0}^k D_i^{m+1} \right) \cup_{\text{Id}} D^n \times \coprod_{i=0}^k S_i^m,$$

where D^n , D_i^{m+1} and S^{n-1} , S_i^m , $i=0,1,\cdots,k$, are balls and spheres of appropriate dimensions indicated by their superscripts, respectively. $M_k^{n,m}$ is the smooth (n+1)-dimensional manifold obtained by removing (k+1)-disjoint geodesic balls D_i^{m+1} , $i=0,1,2,\ldots k$, in M^{m+1} and then gluing $S^{n-1}\times (M^{m+1}\backslash \coprod_{i=0}^k D_i^{m+1})$ with $D^n\times \coprod_{i=0}^k S_i^m$ together by

Received July 14, 1988 and, in revised form, June 23, 1989. The authors were supported in part by National Science Foundation grants DMS 88-05684 (Sha) and DMS 87-02359 (Yang).