A STRUCTURE THEOREM FOR HOLOMORPHIC CURVES IN $Gr(3, C^6)$

QING LIN

Abstract

A holomorphic curve f in $Gr(n, C^{2n})$ is called generic if the curvature of the canonical connection of $f^*(S(n, C^{2n}))$ has distinct eigenvalues, where $S(n, C^{2n})$ is the universal subbundle over $Gr(n, C^{2n})$. A holomorphic curve in $Gr(n, C^{2n})$ is completely split if it is the orthogonal direct sum of n holomorphic curves in the projective plane. These two types of curves are both relatively simple. In this paper, we prove that a 1-nondegenerated holomorphic curve in $Gr(3, C^6)$ is either generic or completely split.

Introduction

Denote the Grassmannian of *n*-dimensional subspaces of \mathbb{C}^{2n} by $\operatorname{Gr}(n, \mathbb{C}^{2n})$. A holomorphic curve in $\operatorname{Gr}(n, \mathbb{C}^{2n})$ is locally a holomorphic mapping of some open disk in \mathbb{C} into $\operatorname{Gr}(n, \mathbb{C}^{2n})$. Because of the analytic structure, we can restrict ourselves to the local holomorphic curves only.

Let $f: \Omega \to Gr(n, \mathbb{C}^{2n})$ be a holomorphic curve. For each z in Ω , we define $(f(z), f'(z)) = \operatorname{span}\{\gamma_1(z), \dots, \gamma_n(z), \gamma'_1(z), \dots, \gamma'_n(z)\}$, where $\gamma_j: \Omega \to \mathbb{C}^{2n}$ is holomorphic and $\operatorname{span}\{\gamma_1(z), \dots, \gamma_n(z)\} = f(z)$. Clearly, (f, f') is independent of the choice of $\gamma_1, \dots, \gamma_n$. We say f is 1-nondegenerated if $(f(z), f'(z)) = \mathbb{C}^{2n}$ for each $z \in \Omega$.

Throughout this paper, by "holomorphic curve" we mean "1-nondegenerated holomorphic curve". Let f be a 1-nondegenerated holomorphic curve in $Gr(n, C^{2n})$. Then the holomorphic Hermitian vector bundle

the space
$$f(z)$$

 $E_f: \qquad \downarrow \\ z$

is a completely unitary invariant of f by the Calabi rigidity theorem. By

Received August 15, 1988.