CRITICAL POINTS OF YANG-MILLS FOR NONCOMMUTATIVE TWO-TORI

MARC A. RIEFFEL

In [5] A. Connes and the author described the moduli spaces for the minima of the Yang-Mills function for the case of connections on projective modules over noncommutative two-tori, in the setting of the non-commutative differential geometry initiated by Connes in [4]. The main purpose of the present note is to describe the critical points of the Yang-Mills function for the same case, and also the moduli spaces for these critical points. It turns out that the critical points coincide with certain connections which were used in [3] to construct actions of the Heisenberg Lie group on noncommutative tori. (In fact, we will make crucial use of one of the arguments from [3].) We will find that the moduli spaces for the critical points are finite products of the kinds of spaces which were obtained in [5] as moduli spaces for the minima.

1. The Yang-Mills equations

We begin by recalling briefly the setting of [5]. Let G be a Lie group, and let α be an action of G as automorphisms of a C*-algebra A. We let A^{∞} be the dense *-subalgebra of A consisting of the C^{∞} -vectors for α . Then the infinitesimal form of α gives an action, δ , of the Lie algebra, L, of G, as derivations of A^{∞} . Every finitely generated projective right A-module Ξ has a C^{∞} -version Ξ^{∞} . Since we will never work with A or Ξ , but only with A^{∞} and Ξ^{∞} , we will for notational simplicity denote the latter by A and Ξ from now on. Also, for brevity we will say "projective" when we mean "finitely generated projective".

We can and will assume that Ξ is equipped with a Hermitian metric, \langle , \rangle_A , that is, an A-valued inner product for which it is self-dual. The effect of the choice of Hermitian metric on what follows is discussed in [5, p. 241]. In the role of Riemannian metric for A we assume that L is equipped

Received March 31, 1988 and, in revised form, January 9, 1989. The research reported here was supported in part by National Science Foundation grant DMS 8601900.