INFINITESIMAL RIGIDITY FOR SMOOTH ACTIONS OF DISCRETE SUBGROUPS OF LIE GROUPS

ROBERT J. ZIMMER

1. Introduction

Let G be a connected noncompact semisimple Lie group with finite center and no compact factors, and let $\Gamma \subset G$ be a cocompact discrete subgroup. If G has no simple factor locally isomorphic to any SO(1, n)or SU(1, n), we established in [15], [18], [20] a rigidity property for any isometric action of Γ on a compact Riemannian manifold M. Namely, we proved that any sufficiently small perturbation of an isometric action (in the topology of pointwise convergence on Γ with the C^{∞} -topology on Diff(M) which is ergodic must also leave some smooth metric invariant. In this paper, we examine some rigidity properties of nonisometric actions of Γ . All presently known ergodic volume preserving actions of Γ on compact manifolds are of an algebraic nature (at least in the case in which G is of higher rank, i.e., all simple factors of G have real rank at least 2), and it is these algebraically defined actions which we examine. More precisely, let $\pi: G \to H$ be a homomorphism of G into another Lie group H, and let $\Lambda \subset H$ be a cocompact discrete subgroup. Then Γ acts on $M = H/\Lambda$ via π . Under mild assumptions this action will be ergodic (see [6, Chapter 2]). Unless π is trivial, there is no Γ -invariant Riemannian metric on H/Λ .

We recall that an action of a group Γ on a manifold M is called infinitesimally rigid if $H^1(\Gamma, \operatorname{Vect}(M)) = 0$, where $\operatorname{Vect}(M)$ is the space of smooth vector fields on M. This definition is of course motivated by the fact that $\operatorname{Vect}(M)$ is the Lie algebra of the infinite dimensional group $\operatorname{Diff}(M)$, and the natural action of Γ on $\operatorname{Vect}(M)$ is simply the composition of the action $\Gamma \to \operatorname{Diff}(M)$ with the adjoint representation of $\operatorname{Diff}(M)$ on its Lie algebra. We shall call an action L^2 -infinitesimally rigid if the map $H^1(\Gamma, \operatorname{Vect}(M)) \to H^1(\Gamma, \operatorname{Vect}_2(M))$ is zero, where $\operatorname{Vect}_2(M)$ is the space of L^2 -vector fields on M. We can then state our main results as follows.

Received January 27, 1987. The author's research was partially supported by National Science Foundation Grant DMS-8301882.