POSITIVE SCALAR CURVATURE AND LOCAL ACTIONS OF NONABELIAN LIE GROUPS

MAREK LEWKOWICZ

1. Introduction

Lawson and Yau proved in [7] that if a compact, connected, nonabelian Lie group G acts smoothly and effectively on a compact manifold M, then M admits a riemannian metric of positive scalar curvature. In Theorem A below we show that the same conclusion holds under somewhat weaker assumptions described by the following definition:

1.1. Definition. A local action of nonabelian Lie groups (or \mathcal{N} -structure) on a smooth manifold M consists of a finite cover $(U_i)_{i \in I}$ of M by open, connected sets U_i and a family $F_i \colon G_i \times U_i \to U_i$ $(i \in I)$ of smooth, effective actions of compact, connected, nonabelian Lie groups G_i such that the following compatibility condition holds:

for $i, j \in I$ the set $U_{ij} = U_i \cap U_j$ (if nonempty) is both G_i -and G_j -invariant and one of the two groups contains the other if we treat them as subgroups of $Homeo(U_{ij})$.

Theorem A. If a compact manifold M admits a local action by non-abelian Lie groups, then it admits a riemannian metric of positive scalar curvature.

§§4 and 5 contain the main conceptual body of the proof of Theorem A and explain its relation to [7]. The technical core of the proof is deferred to §§9 and 10.

Theorem B (see §2) states that if M and N are two manifolds with \mathcal{N} -structures and $\dim(M) = \dim(N) \geq 6$, then the connected sum M#N also has an \mathcal{N} -structure. This theorem thus provides a method of constructing local actions from global ones and illustrates some flexibility of \mathcal{N} -structures, which is not shared by global actions.

Theorem C (see §3) supplies examples of manifolds (with the family $(T^n \times S^2) \# (T^n \times S^2)$, $n \ge 3$, among them) which admit local actions but no global action by a nonabelian group. As those manifolds have metrics