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This paper deals with two aspects of the algebraic structure of .#, the
space of harmonic maps from a simply-connected 2-dimensional domain
(either Riemannian or Lorentzian) into a real Lie group Gg, the real form
of a complex group G. In the language of theoretical physics, we study
the classical solutions of the chiral model. In the first part of the paper
(§§1-8) we construct a representation of the loop group & (S', Gg) on #
corresponding to the Kac-Moody Lie algebra of infinitesimal deformations
observed by Dolan [8]. Here the main theorems are the description of the
action on .# (Theorem 6.1) and the description of the action of a subgroup
on the space of harmonic maps into Grassmannians (Theorem 8.3). In the
second part of the paper (§§9~15) we restrict to a theory which applies only
when Q is a 2-dimensional, simply-connected, Riemannian domain and
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