NEW APPLICATIONS OF MAPPING DEGREES
TO MINIMAL SURFACE THEORY

BRIAN WHITE

In [21], Tomi and Tromba showed how it was possible to use the degree theory of Smale [19] to solve the long open problem of proving that every smooth embedded curve in the boundary of a convex subset of \mathbb{R}^3 must bound an embedded minimal disk. Later Almgren and Simon [4] and Meeks and Yau [15] gave different proofs. In this paper we give other applications of degree theory to minimal surfaces. In particular, we show:

1. If Φ is an even constant coefficient parametric elliptic functional in \mathbb{R}^3 and γ is a smooth embedded curve on the boundary of a strictly convex subset of \mathbb{R}^3, then γ bounds an embedded Φ-stationary and Φ-stable disk. Furthermore, a generic such curve bounds an odd number of embedded Φ-stationary disks and an even number of embedded Φ-stationary surfaces of each other topological type.

2. Let N be a smooth Riemannian 3-manifold with strictly mean convex boundary diffeomorphic to the 2-sphere. Suppose either that N is not diffeomorphic to the 3-ball, or else that N contains a compact minimal surface without boundary. Then there exists a sequence D_i of embedded minimal disks in N such that $\partial D_i \subset \partial N$, ∂D_i converges to a smooth embedded curve γ, and the area of D_i tends to infinity.

3. There exists a complete minimal hypersurface M in \mathbb{R}^n such that M is singular, M is not a cone, and M is asymptotic at ∞ to an area minimizing cone C that is regular except at the origin.

4. There exists a complete area minimizing hypersurface M in \mathbb{R}^n such that M is asymptotic to an area minimizing cone C that is regular except at the origin, but M is not congruent to any leaf of the foliation of minimal hypersurfaces associated with C.

These results are proved in §§2, 3, 4, and 5, respectively. All depend on the preliminaries in §1, and §5 is a continuation of §4, but otherwise the sections are independent of each other. §6 discusses examples.

Received February 27, 1987 and, in revised form, November 30, 1987. Research supported by NSF grants DMS-8611574 and DMS-8553231.