STABILITY OF SINGULARITIES OF MINIMIZING HARMONIC MAPS

ROBERT HARDT & FANG-HAU LIN

1. Introduction

Singularities of energy minimizing harmonic maps may occur with 3dimensional domains. Perhaps the simplest example is the map x/|x| which has least energy [2] among all finite energy maps from the 3-ball B to the 2sphere S^2 having boundary values given by the identity map of S^2 . Moreover, in dimension 3, singularities are, by the work of R. Schoen and K. Uhlenbeck [10, Theorem], [11, 2.7], at most isolated. As the boundary data varies the singularities presumably move. In [5] was noted the impossibility of a sequence of minimizing configurations in which a pair of oppositely oriented singularities come together and cancel, leaving a singularity-free configuration. This followed from the strong convergence of minimizers and the basic small energy regularity theorem [10, 2.6]. These arguments left open the possibility of three singularities, two oppositely oriented, merging and leaving a single singularity. This is not precluded by either topological degree considerations or by the monotonicity of energy [11, 2.4]. However, the estimates of the present paper, in particular, rule out any such cancellation. Our results are based on the following:

Perturbation Lemma. There exist positive constants δ_0, c_0 , and α so that if $\varphi \in \operatorname{Lip}(\mathbf{S}^2, \mathbf{S}^2)$, $\delta = \|\varphi - \operatorname{id}_{\mathbf{S}^2}\|_{\operatorname{Lip}} \leq \delta_0$, and $u \in H^1(\mathbf{B}, \mathbf{S}^2)$ is energy minimizing with $u|\mathbf{S}^2 \equiv \varphi$, then u has only one singular point a,

$$|a| \leq c_0 \delta^{1/2}$$
 and $\left\| u - \theta \left(\frac{x-a}{|x-a|} \right) \right\|_{\mathcal{C}^{\alpha}} \leq c_0 \delta^{1/4}$

for some orthogonal rotation θ of \mathbf{R}^3 with $\|\theta - \mathrm{id}_{\mathbf{R}^3}\| \leq c_0 \delta^{1/4}$.

This leads to the following general

Stability Theorem. Suppose Ω is a smooth bounded domain in \mathbb{R}^3 , $\psi \in \operatorname{Lip}(\partial\Omega, \mathbb{S}^2)$, and v is the unique energy-minimizing map from Ω to \mathbb{S}^2 with $v | \partial \Omega \equiv \psi$. There exists a positive number β and, for any positive ε , a

Received June 26, 1987 and, in revised form, September 14, 1987. The authors' research was partially supported by the National Science Foundation.