ON THE MEAN EXIT TIME FROM A MINIMAL SUBMANIFOLD

STEEN MARKVORSEN

Abstract

Let M^m be an immersed minimal submanifold of a Riemannian manifold $Nⁿ$, and consider the Brownian motion on a regular ball $Ω_R ⊂ M$ with exterior radius *R.* The mean exit time for the motion from a point $x \in \Omega_R$ is called $E_R(x)$. In this paper we find sharp support functions for $E_R(x)$ in the following distinct cases. The support is from below if the sectional curvatures of *N* are bounded from below by a nonnegative constant and the support is from above if the sectional curvatures of *N* are bounded from above by a nonpositive constant. It follows that the minimal submanifolds of \mathbb{R}^n all have the same mean exit time function and we show that this function actually characterizes the minimal hypersurfaces in the set of all hypersurfaces of \mathbb{R}^n .

1. Introduction

Let M^m be an immersed (not necessarily minimal) submanifold of a com plete Riemannian manifold N^n . The distance function on N is denoted by *r* so that $dist_N(p, x) = r_p(x)$ for all p, x in N. We now fix $p \in M \subset N$ and define a *regular domain* $\Omega_R(p) \subset M$ to be a smooth connected component of $B_R(p) \cap M^m$ which contains p. Here $B_R(p)$ is the geodesic R-ball around p in *N* subject to the usual restriction that $R < \min\{i_N(p), \pi \sqrt{\kappa}\}\)$, where κ is the supremum of the sectional curvatures of N , and $i_N(p)$ is the injectivity radius of *N* from *p.*

We now consider the Brownian motion on the domain Ω_R (cf. [4]) and denote by $E_R(x)$ the mean time of first exit from Ω_R for a Brownian particle starting at $x \in \Omega_R$. We want to compare $E_R(x)$ with the mean exit time function $\tilde{E}_R^b(\tilde{x})$ on the space form *R*-ball $\tilde{B}_R^m(\tilde{p})$ of dimension $m = \dim M$ and constant curvature $b \in \mathbb{R}$. Since \tilde{B}_R has maximal isotropy at the center \tilde{p} , we have that \tilde{E}_R only depends on the distance of \tilde{x} from \tilde{p} . Hence we may, and do, write $\tilde{E}_R^b(\tilde{x}) = \tilde{\mathscr{E}}_R^b(r_{\tilde{p}}(\tilde{x})) = \tilde{\mathscr{E}}_R^b(r).$ In order to compare E and \tilde{E} we transplant \tilde{E} to Ω_R by the following definition:

$$
\tilde{E}_R^b
$$
: $\Omega_R \to \mathbf{R}$; $\tilde{E}_R^b(x) = (\tilde{\mathscr{E}}_R^b \circ r_p)(x)$.

Our main result can now be formulated as follows.