MORSE THEORY FOR LAGRANGIAN INTERSECTIONS

ANDREAS FLOER

Abstract

Let P be a compact symplectic manifold and let $L \subset P$ be a Lagrangian submanifold with $\pi_2(P,L)=0$. For any exact diffeomorphism ϕ of P with the property that $\phi(L)$ intersects L transverally, we prove a Morse inequality relating the set $\phi(L) \cap L$ to the cohomology of L. As a consequence, we prove a special case of the Arnold conjecture: If $\pi_2(P)=0$ and ϕ is an exact diffeomorphism all of whose fixed points are nondegenerate, then the number of fixed points is greater than or equal to the sum over the \mathbf{Z}_2 -Betti numbers of P.

1. Introduction

Let (P, ω) be a symplectic manifold, i.e., P is a smooth manifold with a closed and nondegenerate 2-form ω . We can then assign to each smooth function

$$H: P \times \mathbf{R} \to \mathbf{R}: H(x,t) = H_t(x)$$

a family of vector fields X_t on P defined by

$$(1.1) \omega(\cdot, X_t) = dH_t.$$

This is called the Hamiltonian vector field associated with the time dependent Hamiltonian H. If P is compact, then the differential equation

(1.2)
$$\frac{d}{dt}\phi_{H,t}(x) = H_t(\phi_{H,t}(x))$$

with initial condition $\phi_{H,0}(x) = x$ defines a family of smooth diffeomorphisms of P, which also preserve the symplectic structure, i.e. for each $t \in \mathbf{R}$, we have $\phi_t^* \omega = \omega$.

In fact, the set

(1.3)
$$\mathscr{D} = \{ \phi_{H,t} \mid t \in \mathbf{R} \text{ and } H \in C^{\infty}(P \times \mathbf{R}) \}$$

turns out to be a subgroup of the group of symplectic diffeomorphisms of P.

Received May 22, 1987 and, in revised form, October 1, 1987. This work was partly supported by grant ARA DAAG29-84-K-0150.