COMPACT HYPERSURFACES WITH CONSTANT SCALAR CURVATURE AND A CONGRUENCE THEOREM

ANTONIO ROS

For an *n*-dimensional hypersurface M^n in the Euclidean space, we consider the *r*th mean curvature H_r , defined as the elementary symmetric polynomial of degree *r* in the principal curvatures of M^n . H_1 , H_2 , and H_n are the mean curvature, the scalar curvature, and the Gauss-Kronecker curvature respectively. The simplest global question concerning these geometric objects is the following:

"Given a compact hypersurface M^n embedded/immersed in the Euclidean space, such that H_r is constant for some $r = 1, \dots, n$, is M^n a sphere?"

The only solutions for this problem have been obtained in the cases r = 1and r = n. If the mean curvature is constant and M^n is embedded, Aleksandrov [1] proved that M^n is a sphere. In the immersed case Hsiang, Teng, and Yu [3], and Wente [8], constructed nonspherical compact hypersurfaces in higher dimension and in \mathbb{R}^3 , respectively. If the Gauss-Kronecker curvature is constant, then we conclude via the Hadamard theorem that M^n is strictly convex. But if M^n is strictly convex we know that $H_r = \text{const.}$, for some r, implies that M^n is a sphere (see Hsiung [4]). If n = 2 we obtain a classical result of Liebmann [6].

For the scalar curvature the problem has a special interest, which was proposed by Yau in [9].

In this paper we first prove that

"The sphere is the only compact hypersurface with constant scalar curvature embedded in the Euclidean space."

Received December 8, 1986.