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APPLICATION OF THE
SELBERG TRACE FORMULA TO THE
RIEMANN-ROCH THEOREM

GARTH WARNER

1. Introduction

The Riemann-Roch theorem is one of the foundational results in the theory
of Riemann surfaces. Many proofs of this theorem are known, some tradi-
tional, others less so. The objective of this note is to give a proof in the latter
vein, the primary tool being the Selberg trace formula.

Thus let X be a compact Riemann surface of genus g > 1. Then we may
write X = '\ D, D the open unit disk, I' a discrete, strictly hyperbolic,
cocompact subgroup of H = G/{+1}, G = SU(1,1). When applied to auto-
morphic forms on I', the Riemann-Roch theorem and the Selberg trace
formula say about the same thing. Consequently, it should not come as too
much of a surprise that the one can be derived from the other.

For us, it will be convenient to regard the Riemann-Roch theorem as a
statement about holomorphic line bundles on X. In turn, to get this into a
group-theoretic context, it is necessary to use the language of automorphy
factors. Once this transcription has been accomplished, it is technically
simplest to pass to the (g — 1)-fold covering group of G. Since the irreducible
unitary representations of the universal covering group G of G have been
classified, no difficulty is encountered in doing so. Applying now the Selberg
trace formula to suitable coefficients or quasi-coefficients then leads easily to
the Riemann-Roch theorem.

It will be clear that what is said here can be said more generally. Neverthe-
less, we shall stay the course and not take up these side issues, interesting as
they may be. Let us say only that Shimura [25] has proved a Riemann-Roch
theorem for the traces of the Hecke operators. Agreeing to place ourselves in
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