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FLAT SPACETIMES

DAVID FRIED

Abstract

Those closed pseudo-Riemannian manifolds covered by Minkowski space M

are classified up to finite covers. The simply transitive isometric actions on M

are listed. Some spacetimes with 2 ends satisfying a causality condition are

analyzed.

We call a 4-manifold X wtih a metric g of signature ( + , + , + , - ) a

spacetime. We will assume that g has zero curvature, i.e. X is flat. Then X is a

special kind of affine manifold, namely an affine manifold with a parallel

metric of the given signature. We also assume X is complete in the sense that

geodesies on X extend for all time. This implies that the universal cover of X is

Minkowski space M.

We will classify such X's under the assumption that X is compact. We

prove in §1 that π has a solvable subgroup of finite index, using theory

developed in [5] with W. Goldman. This result has been extended to higher

dimensions by Goldman and Kamashima [6] but our proof is more geometric.

For a noncompact counterexample see [8] and for further discussion see [9].

The classification also uses a theorem of Auslander's on unipotent simply

transitive affine actions [1], For subgroups of the isometry group 9 of

Minkowski space, those are classified in §2. This is extended to all simply

transitive actions in §3. Then in §4 we give our classification. It extends to

dimension 4 that given by Auslander and Markus for 3-manifolds [2].

It is conceivable that if X is compact then g is automatically complete. A

counterexample would be a very interesting spacetime: its curvature and global

topology would not account for its failure to be complete. It would also be a

valuable example in the theory of affine manifolds.

In §5 we discuss some two ended flat spacetimes with respect to their causal

structure.
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