CONSTRUCTION OF CONNECTION INDUCING MAPS BETWEEN PRINCIPAL BUNDLES. PART I

G. D'AMBRA

0. Introduction

Consider two C^{∞} -smooth principal bundles, say $X \to V$ and $Y \to W$, with the same structure group G and with C^{∞} connections Γ on X and Δ on Y, respectively. We look for a C^{∞} -map $f: V \to W$ such that the induced bundle $f^{*}(Y)$ over V with the induced connection $f^{*}(\Delta)$ is isomorphic to (X, Γ) . This means that f can be covered by (or lifted to) a morphism of bundles, F: $X \to Y$, inducing Γ from Δ , which is expressed by $F^{*}(\Delta) = \Gamma$.

0.1. The problem of inducing connections was first studied by Narasimhan and Ramanan [3] who proved that for a given compact Lie group G and an integer $n = 0, 1, \cdots$, there exists a (universal) bundle (Y, Δ) over some (classifying) compact manifold W, such that every G-bundle X over an ndimensional manifold V with an arbitrary C^{∞} -connection Γ can be induced by a C^{∞} -morphism $F: X \to Y$. Furthermore, they give a precise description of the universal connection Δ for the unitary and the orthogonal groups. Namely, if G = U(p) they take the Grassmann manifold $\operatorname{Gr}_p(\mathbb{C}^q)$ for W and use the standard connection Δ on the canonical bundle $Y \to \operatorname{Gr}_p(\mathbb{C}^q)$ (here Y is the Stiefel manifold of orthogonal p-frames in \mathbb{C}^q). The dimension q for which they prove the existence of F is $q = (n + 1)(2n + 1)p^3$, where $n = \dim V$. Similarly, for G = O(p), their method provides a connection inducing map into the real Grassmann manifold $\operatorname{Gr}_p(\mathbb{R}^q)$, again for $q = (n + 1)(2n + 1)p^3$.

0.2. The result by Narasimhan-Ramanan was improved for G = O(p) by Gromov (see 2.2.6 in [1]) who showed the existence of a connection inducing map $f: V \to \operatorname{Gr}_p(\mathbb{R}^q)$ for $q = \max(p(n+1), p(n+2) + n)$. Furthermore, if the manifold V is parallelizable and the bundle $X \to V$ is trivial, then

Received November 26, 1985. The author was a member of the Mathematical Sciences Research Institute of Berkeley when this paper was completed. Research supported in part by National Science Foundation Grant 8120790.