RELATED ASPECTS OF POSITIVITY IN RIEMANNIAN GEOMETRY

DENNIS SULLIVAN

1. Introduction

There are several numerical functions which can be related in the geometric context of Riemannian manifold, especially those which are complete and have constant negative curvature. They are:

- (i) The Hausdorff dimension D(X) of a closed set X in Euclidean space.
- (ii) The point λ_0 of the L^2 -spectrum nearest to zero for the Friedrich extension of a semidefinite symmetric operator Δ .
- (iii) The critical exponent $\delta(\Gamma)$ of the Poincaré-Dirichlet series of a discrete group Γ of Moebius transformations of S^d .
- (iv) The parameter of the spherical complementary series of irreducible representations of 0(n, 1), especially $PSI(2, \mathbb{R})$ and $PSI(2, \mathbb{C})$.
- (v) The exponential rate of transience of a positivity preserving Markoff operator P, equivalently the point nearest to zero in the 'positive spectrum' of a Markoff operator P, i.e., λ -potential theory.
 - (vi) The entropy of an ergodic measure preserving flow.

A rich supply of examples is given by groups Γ of non-Euclidean motions of \mathbf{H}^{d+1} having *finite sided* fundamental domains in \mathbf{H}^{d+1} whose Poincaré limit set in S^d has Hausdorff dimension $D > \frac{1}{2}d$. Then:

- (1) The Hausdorff measure μ of the limit set is finite and positive (when the ranks of any cusps are at most D).
- (2) μ on the λ -Martin boundary S^d of \mathbf{H}^{d+1} defines a positive λ -eigenfunction ϕ_{μ} for the Laplacian which is Γ -invariant, where $\lambda = D(d-D)$. (In the situation of (1), $\phi_{\mu}(p)$ has the following nice geometrical interpretation: It is the total Hausdorff mass of the limit set as viewed from p.)
- (3) ϕ_{μ} belongs to $L^2(\mathbf{H}^{d+1}/\Gamma)$ and is the lowest eigenfunction or ground state.