PROJECTIVE STRUCTURES WITH FUCHSIAN HOLONOMY

WILLIAM M. GOLDMAN

A projective structure on a manifold S is a distinguished system of local coordinates modelled on a fixed projective space P in such a way that the local coordinate changes are locally projective. In this paper we will be mainly concerned with projective structures on manifolds of real dimension 2; thus P is either the complex projective line CP^1 or the real projective plane RP^2 . If S is a topological surface then we shall speak of CP^1 -structures (resp. RP^2 -structures) on S; a manifold with a CP^1 -structure (resp. a RP^2 -structure) will be called a CP^1 -manifold (resp. an RP^2 -manifold).

It is well known that if M is a manifold with a projective structure modelled on a projective space \mathbf{P} , then there exists a pair (dev, φ) (unique up to projective automorphisms of \mathbf{P}), where dev: $\tilde{M} \to \mathbf{P}$ is a projective immersion, and φ is a homomorphism of $\pi = \pi_1(M)$ into the group of projective automorphisms of \mathbf{P} . The so-called developing map dev globalizes the coordinate charts defining the projective structure, while the holonomy homomorphism φ globalizes the coordinate changes. It is the purpose of this paper to classify projective structures on closed surfaces whose holonomy homomorphism is a fixed Fuchsian representation.

A Fuchsian representation of a discrete group π on \mathbb{CP}^1 is a faithful representation of π onto a discrete subgroup of $\mathrm{PSL}(2,\mathbb{C})$ preserving a disc Ω in \mathbb{CP}^1 . Let φ be a Fuchsian representation φ of π on Ω . Using the Poincaré model for hyperbolic geometry, $\Omega/\varphi(\pi)$ has a natural hyperbolic structure, which we call the Fuchsian \mathbb{CP}^1 -structure with holonomy φ . Conversely, every hyperbolic structure determines a Fuchsian \mathbb{CP}^1 -structure in this way.

Similarly, suppose that φ is a representation of π in the group of projective transformations of \mathbb{RP}^2 (which we identify with $SL(3, \mathbb{R})$). Then we say that φ is Fuchsian if φ is a faithful representation of π onto a discrete subgroup of

Received April 25, 1985. Research partially supported by grants from the National Science Foundation.