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ISOTOPY OF 4-MANIFOLDS

FRANK QUINN

The principal result of this paper is that the group of homeomorphisms mod
isotopy (the “homeotopy” group) of a closed simply-connected 4-manifold is
equal to the automorphism group of the quadratic form on H,.

There is an analogy between simply-connected closed 4-manifolds and
connected surfaces, in that they are both classified by simple algebraic-
topological data. Surfaces are classified up to homeomorphism by the isomor-
phism class of the fundamental group. The 4-manifolds are classified up to
homeomorphism by the isomorphism class of the intersection form and the
Kirby-Siebenmann invariant in Z /2 [3]. The analogy now extends to automor-
phisms, in that in both cases homeomorphisms are classified by the induced
automorphism of the algebraic structure.

Other results include a “uniqueness” for handlebody structures on simply-
connected 5-manifolds, the determination of ,(TOP(4),/0(4)), and a pseudo-
isotopy theorem for simply connected 4-manifolds with boundary.

1. Statements of results

Suppose M is a closed oriented (topological) manifold of dimension 4. Then
intersections define a symmetric nonsingular bilinear form, denoted by A, on
H,M. A homeomorphism of manifolds induces an isometry of H,, and
isotopic homeomorphisms induce the same isometry. Therefore there is a
natural homomorphism from 7, TOP(M) (= homeomorphisms mod isotopy)
to Aut(H, M, \).

1.1 Theorem. Suppose M is a closed 1-connected 4-manifold. Then the
natural homomorphism wy TOP(M) — Aut(H,M, X) is an isomorphism.

Freedman (3] has shown this to be onto. For injectivity we show that
homeomorphisms which are equal on homology are isotopic, or equivalently
that a homeomorphism inducing the identity on homology is isotopic to the
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