THE HOMOLOGY OF THE MAPPING CLASS GROUP

EDWARD Y. MILLER

1. Introduction

The mapping class group Γ_g is the group of components of the groups $\text{Diff}^+(S_g)$ or orientation preserving diffeomorphisms of a Riemann surface S_g of genus g. Since each component is contractible, there are natural isomorphisms of integral cohomology groups:

(1.1)
$$H^*(B\operatorname{Diff}^+(S_g); Z) = H^*(B\Gamma_g; Z).$$

In the context of complex analysis, Γ_g is called the Teichmuller group. It acts properly and discontinuously on the Teichmuller space T^{3g-3} with finite isotropy groups. The quotient of this action is the module space \mathbf{M}_g of smooth algebraic curves of genus g. Consequently, there is an isomorphism of rational cohomology:

(1.2)
$$H^*(B\Gamma_g; A) = H^*(\mathbf{M}_g; Q).$$

In this paper we will show that \mathbf{M}_g , $B\Gamma_g$, and $B\operatorname{Diff}^+(S_g)$ get more and more complicated as the genus g tends to infinity. More precisely, we will prove:

Theorem 1.1. Let $Q[z_2, z_4, z_6, \cdots]$ denote the polynomial algebra of generators z_{2n} in dimension 2n, $n = 1, 2, 3, \cdots$. There are classes $y_2, y_4, \cdots, y_{2n}, \cdots$ with y_{2n} in the 2nth cohomology group $H^{2n}(B \operatorname{Diff}^+(S_g); Z)$ such that the homomorphism of algebras sending z_{2n} to y_{2n}

$$Q[z_2, z_4, \cdots] \to H^*(\mathbf{M}_g; Q) \cong H^*(B\operatorname{Diff}^+(S_g); Q)$$

is an **injection** in dimensions less than (g/3).

These classes y_{2n} were first introduced by D. Mumford [7]. In the topological context, they are defined as follows:

Let $p: E \to B \operatorname{Diff}^+(S_g)$ be the universal S_g bundle with fiber S_g . Let d be the first Chern class of T_* , the tangent bundle along the fibers of the

Received December 25, 1985.