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1. Introduction
It is interesting to investigate the influence of total curvature of a complete,

noncompact, oriented and finitely connected Riemannian 2-manifold on the
Riemannian metric. The total curvature of such an M is defined to be an
improper integral of the Gaussian curvature G with respect to the area element
dM induced from the Riemannian metric, and expressed as

c(M)= ί GdM.
JM

The pioneering work on total curvature was done by Cohn-Vossen in [2], which
states that if M admits total curvature, then c(M) < 2ττχ(M), where χ(M) is
the Euler characteristic of M. He also proved in [3] that if a Riemannian plane
M (e.g., M is a complete Riemannian manifold homeomorphic to R2) admits
total curvature and if there exists a straight line (defined in the next paragraph)
on M, then c(M) < 0.

It is the nature of completeness and noncompactness of a Riemannian plane
M that through every point on M there passes at least a ray γ: [0, oo) -> M,
where it is a unit speed geodesic satisfying d(y(t1\y(t2)) = \tx — t2\ for all
tι,t2 > 0, and d is the distance function induced from the Riemannian metric.
A unit speed geodesic γ: R -> M is called a straight line if d(y(tι\y(t2)) =
V\ ~ h\ f°r aU *i> h G R- Re c aU that M is said to be finitely connected if it is
homeomorphic to a compact 2-manifold (without boundary) with finitely
many points removed.

As was shown by Maeda [7], [8] and by Shiga [10], the total curvature of a
Riemannian plane M imposes strong restrictions to the mass of rays emanating
from an arbitrary fixed point on M. For a point p on M let Sp be the unit
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