J. DIFFERENTIAL GEOMETRY
21 (1985) 35—45

ON CARNOT-CARATHEODORY METRICS

JOHN MITCHELL

1. Introduction

Consider a smooth Riemannian n-manifold (M, g) equipped with a smooth
distribution of k-planes. Such a distribution A assigns to each point m € M a
k-dimensional subspace of the tangent space 7,,M. An absolutely continuous
curve a in M is said to be horizontal if it is a.e. tangent to the distribution A.
One may define a metric on M as follows.

Definition. The Carnot-Carathéodory distance between two points p, g €
Misd(p,q)= infwecp.q{length(w)}, where C, , is the set of all horizontal
curves which join p to ¢. The metric d, is finite provided that the distribution A
satisfies Hormander’s condition (assuming that M is connected). To describe
this condition, let X, X,,---,X, be a local basis of vector fields for the
distribution near m € M. If these vector fields, along with all their commuta-
tors, span 7,,M, then the vector fields are said to satisfy Hormander’s
condition at m. Denote by V,(m) the subspace of 7,,M spanned by all
commutators of the X;’s of order < i (including, of course, the X)’s). It is easy
to see that V,(m) does not depend upon the choice of local basis { X;}, so it
makes sense to say that the distribution satisfies Hormander’s condition at m if
dim V;(m) = dim(M) for some i. This infinitesimal transitivity implies local
transitivity:

Theorem (Chow). If a smooth distribution satisfies Hormander’s condition at
m € M, then any point p € M which is sufficiently close to m may be joined to m
by a horizontal curve.

Thus, if M is connected, the metric d is finite.

We will prove below the following two local theorems concerning the metric
* space (M, d,) associated to a generic distribution A on M. (A distribution is
said to be generic if, for each i, dim(V,(m)) is independent of the point
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