TOPOLOGICAL INVARIANTS AND EQUIDESINGULARIZATION FOR HOLOMORPHIC VECTOR FIELDS

CÉSAR CAMACHO, ALCIDES LINS NETO & PAULO SAD

The integrals of a holomorphic vector field Z defined in an open subset \mathcal{U} of \mathbb{C}^n are complex curves parametrized locally as the solutions of the differential equation

$$\frac{dz}{dT} = Z(z), \qquad T \in \mathbb{C}, z \in \mathscr{U}.$$

They define a complex one-dimensional foliation \mathscr{F}_Z of \mathscr{U} with singularities at the zeros of Z. The purpose of this paper is to exhibit several topological invariants of these foliations near a singular point.

Let \mathcal{O}_n be the ring of germs of holomorphic functions defined in some neighborhood of $0 \in \mathbb{C}^n$ and let $I(Z_1, \dots, Z_n)$ be the ideal generated by the germs at $0 \in \mathbb{C}^n$ of the coordinate functions of Z. We define the *Milnor number* μ of the vector field Z at $0 \in \mathbb{C}^n$ as

$$\mu = \dim_{\mathbb{C}} \mathcal{O}_n / I(Z_1, \cdots, Z_n).$$

This number is finite if and only if $0 \in \mathbb{C}^n$ is an isolated singularity of Z, a hypothesis which we will assume from now on. In this case μ coincides with the topological degree of the Gauss mapping induced by Z, considered as a real vector field, in a small (2n-1)-sphere around $0 \in \mathbb{C}^n$. In Theorem A we show that: the Milnor number of Z is a topological invariant of \mathscr{F}_Z provided that $n \ge 2$.

Consider now a polydisc $B \subset \mathcal{U}$ centered at $0 \in \mathbb{C}^n$ and let $f: B \to \mathbb{C}^k$, f(0) = 0, be an irreducible analytic function. Then $V = f^{-1}(0)$ is an analytic subvariety and we say V is invariant by Z if for any $p \in V$ we have $df(p) \cdot Z(p) = 0$. Suppose k = n - 1. Then $\dim_{\mathbb{C}} V = 1$ and $V - \{0\}$ is a leaf of \mathscr{F}_Z . Moreover, if B is small enough, then $D = B \cap V$ is homeomorphic to a 2-disc via a Puiseaux's parametrization. Then the restriction of Z to D can be considered as a real vector field X defined in a 2-disc. The multiplicity of Z