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0. Introduction
In 1965 T. J. Willmore [12] proposed to study the functional

#(X) = fMszA

on immersions X: M2 — E3, where M? is a compact surface, H is the mean
curvature of the immersion, and dA is the induced area from (or area density if
M is not oriented). If we define

#(X) =fM (H*—K)dd,

then by the Gauss-Bonnet theorem
W (X) =#(X) +27x(M),

so the two functionals differ by a constant. The functional #°(X) has the
advantage that its integrand is nonnegative and vanishes exactly at the umbilic
points of the immersion X.

Obviously #(X) =0 iff M> = S? and X is totally umbilic. Thus, the
absolute minimum of % on the space of immersions X: S? — E? is 0 and the
critical locus of such X is known. When M is a torus, Willmore provided an
example of an immersion X: M — E3 with #°(X) = 272 and showed that
W (X) > 27?2 for all smooth surfaces of revolution. He then conjectured that
¥ (X) > 272 for all immersions of the torus with equality only for the
example he provided: the anchor ring swept out by revolving a circle of radius
r about the line whose distance from the center of the circle was rv/2. White
then pointed out that the two-form (H? — K) d4 had the property of being
invariant under conformal transformations of E? plus the “point at infinity”
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