ON THE GAUSS MAP OF AN AREA-MINIMIZING HYPERSURFACE

BRUCE SOLOMON

0. Introduction

Let S be an area-minimizing hypersurface of \mathbb{R}^N . By hypersurface, we mean a codimension one, locally integral current. By *area-minimizing*, we mean that, without introducing boundary, no compact piece of S can be replaced by a piece having less area. The main concern of this paper is the relationship between S and its spherical image under the Gauss map. For a more precise treatment of our terminology, here and below, the reader should refer to §1.

In the 1960's, area-minimizing hypersurfaces provided the focus for a great deal of research. Indeed, a major accomplishment of that period was the discovery that, upon imposing the dimensional restriction N < 8, one guarantees to S several very strong properties which, generally, fail to hold as soon as N > 7. Paramount among these properties are two: *interior regularity* and, its alter ego, the *parametric Bernstein property*. The former states that $spt(S) \sim spt(\partial S)$ is a codimension one, real analytic submanifold of \mathbb{R}^N ; the latter, that if $\partial S = 0$, then each connected component of spt(S) is a hyperplane.

Our paper here introduces a new condition which guarantees both of these properties, independently of dimension. That is, we show that the dimensional hypothesis N < 8 can be *replaced* by a different condition, one which involves the topology and Gauss image of $\operatorname{spt}(S) \sim \operatorname{spt}(\partial S)$. We thereby obtain a regularity result (Theorem 3), and a parametric Bernstein result (Theorem 5), which for example, imply the following: Suppose $H^1(\operatorname{reg} S) = 0$ and Gauss $(S) \subset S^{N-1}$ omits a thickened great S^{N-3} . Then $\operatorname{spt}(S) \sim \operatorname{spt}(\partial S)$ is smooth, and if $\partial S = 0$, consists of affine hyperplanes. A local version of this also holds, estimating curvature when $\partial S \neq 0$ (Theorem 4).

Like our results, our methods follow a pattern developed in the classical (dimensionally restricted) case. Recall that there, regularity is proved by induction on N. The inductive step requires that a smooth minimal hypersurface M in S^{N-1} be an equator if the cone $0 \ll M$ is area-minimizing. That

Received July 30, 1983, and, in revised form, September 9, 1983.