HILBERT STABILITY OF RANK-TWO BUNDLES ON CURVES

DAVID GIESEKER & IAN MORRISON

1. Let k be an algebraically closed field, and let d and g be two integers with $g \ge 2$ and $d \ge 1000 g(g-1)$. Let n=d+2-2g, and let W be a vector space of dimension n. G will denote the grassmannian of all codimension-two subspaces of W, and \mathcal{E} will denote the universal rank-two bundle on G. In this paper, a curve will be a connected one-dimensional projective scheme. Let C be a curve on G, i.e., C is a subscheme of G which is a curve, and consider $E = \mathcal{E}_C = \mathcal{E}_{|C}$. Let $P_C(m) = \chi((\det E)^{\otimes m})$ be the Hilbert polynomial of C where $\det E = \bigwedge^2 E$. We let $S_{g,d}$ be the set of all curves C on G with $P_C(m) = dm + 2 - 2g$. Thus $S_{g,d}$ is the set of all curves of genus g and degree d on G.

Now W is identified with $H^0(G, \mathcal{E})$, so given $C \in S_{g,d}$, there is a natural map

$$\varphi_1:W\to H^0(C,E).$$

We will identify W with $H^0(C, E)$ if φ_1 is an isomorphism. Thus we obtain a map

$$\varphi_2: \bigwedge^2 W \to H^0(C, \bigwedge^2 E).$$

So for any positive integer m, we obtain a map

$$\varphi_3: S^m(\wedge^2 W) \to H^0(C, (\det E)^{\otimes m}).$$

We may and do choose m so that φ_3 is onto, so that $h^0(C, (\det E)^{\otimes m}) = P_C(m)$ for any $C \in S_{g,d}$. Thus we finally obtain a map

$$\varphi_C^m: \bigwedge^{P_C(m)} S^m(\wedge^2 W) \to \bigwedge^{P_C(m)} H^0(C, (\det E)^{\otimes m}) \cong k.$$

We say $C \subseteq G$ is m-Hilbert stable (resp., m-Hilbert semistable) if φ_C^m is properly stable (resp., semistable) under the induced action of SL(W) in the

Received January 10, 1983, and, in revised form, July 7, 1983. Research partially supported by NSF Grant MCS79-03171.