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THE FUNDAMENTAL SOLUTION OF THE
HEAT EQUATION ON A COMPACT LIE GROUP
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1. Introduction

The purpose of this paper is to study the fundamental solution of the heat
equation on a compact Lie group. Our main result is to express this function in
terms of a product over the roots of the Lie group. The terms in this product
are then identified as classical functions. The result is the following.

Theorem 1.1. Let G be a compact semisimple, simply connected Lie group.
Then the fundamental solution of the heat equation is
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The notation in this theorem is the following. Firstly,

(1.1) 0(t) = Ye

with the sum over all integers and 8’(¢) is the usual derivative of 6. Then
, 00,

(1.2) 03(Z,t)—a—z(z,t)

where 0, is the classical theta function of [5]. Notice that we are using ¢ for the
second variable rather than g = e'™ which is used in [5]. The constant p is the
number of positive roots and / is the rank of the Lie group.

The trace of the heat kernel is K(1, ¢), where 1 is the identity element of the
group. It follows immediately from Theorem 1.1 that we can express K(1, ¢) in
terms of classical functions.

Corollary 1.2. The trace of the heat kernel is
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