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Historical Introduction
The classical Poisson bracket operation defined on functions on R?” is
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In the early nineteenth century, Poisson noticed that the vanishing of {f, g}
and {f, h} imply that of {f,{g, h}}; almost thirty years later Jacobi dis-
covered the identity {f, {g, h}} = {{/f, g8}, h} + {g,{f, h}} which “explains”
Poisson’s theorem. In his study of general composition laws satisfying the
Jacobi identity, Lie [29] defined in local coordinate form what is now known as
a Poisson structure. On R’ such a structure is given by functions w; ;(x,,- - -,x,)
satisfying the identities
W, + wj; = 0,
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