FOLIATIONS AND THE TOPOLOGY OF 3-MANIFOLDS

DAVID GABAI

1. Introduction

Given a compact connected oriented 3-manifold M with boundary ∂M , when does there exist a codimension-1 transversely oriented foliation \mathcal{F} which is transverse to ∂M and has no Reeb components? If such an \mathcal{F} exists, then ∂M necessarily is a (possibly empty) union of tori and M is either $S^2 \times S^1$ (and \mathcal{F} is the product foliation) or irreducible. The first condition follows by Euler characteristic reasons while the latter follows from the work of Rosenberg [24] extending the work of Reeb [23] and Novikov [21]. Our main result says that such conditions are sufficient when $H_2(M, \partial M) \neq 0$.

If such a foliation \mathcal{F} exists on M, then it follows from the work of Thurston [32] that any compact leaf L is a Thurston norm minimizing surface for the class $[L] \in H_2(M, \partial M)$. Our main result says that for a 3-manifold M satisfying the above necessary conditions any norm minimizing surface can be realized as a compact leaf of a foliation without Reeb components.

Theorem 5.5. Let M be a compact connected irreducible oriented 3-manifold whose boundary ∂M is a (possibly empty) union of tori. Let S be any norm minimizing surface representing a nontrivial class $z \in H_2(M, \partial M)$. Then there exists foliations \mathfrak{F}_0 and \mathfrak{F}_1 of M such that:

(1) for $i = 0, 1, \mathfrak{F}_i \pitchfork \partial M$ and $\mathfrak{F}_i | \partial M$ has no Reeb components,

(2) every leaf of \mathcal{F}_0 and \mathcal{F}_1 nontrivially intersects a closed transverse curve,

(3) S is a compact leaf of both \mathcal{F}_0 and \mathcal{F}_1 ,

(4) \mathfrak{F}_0 is of finite depth,

(5) \mathfrak{F}_1 is C^{∞} except possibly along total components of S.

We now state some corollaries of the theorem.

Corollary 6.2. Let L be an oriented nonsplit link in S^3 . Then S is a surface of minimal genus for L if and only if there exists a C^{∞} transversely oriented foliation

Received July 18, 1982, and, in revised form, June 6, 1983. Partially supported by NSF Grant # MCS 80-17200.

The author wishes to thank A. Haefliger and J. P. Otal for the detailed list of corrections to the original paper.