CONFORMAL AND MINIMAL IMMERSIONS OF COMPACT SURFACES INTO THE 4-SPHERE

ROBERT L. BRYANT

ABSTRACT. We study the twistor map of Penrose, $T: \mathbb{CP}^3 \to S^4$ and show that the complex 2-plane field in \mathbb{CP}^3 orthogonal to the fibers of T is a holomorphic nonintegrable 2-plane field. We then show that every horizontal holomorphic curve in \mathbb{CP}^3 projects under T to be a minimal surface in S^4 . Finally, we use the Riemann-Roch theorem to construct, for any compact Riemann surface M^2 , a holomorphic horizontal curve $\Phi: M^2 \to \mathbb{CP}^3$ without ramification. It follows that $T \circ \Phi: M^2 \to S^4$ is a conformal and minimal immersion.

0. Introduction

The study of minimal surfaces in spheres has received much attention. In [7] Lawson proved that every compact surface except \mathbb{RP}^2 could be immersed into S^3 as a minimal surface. However, it is unknown whether every compact *Riemann* surface (= compact surface with a fixed complex structure) can be conformally and minimally immersed into S^3 .

In [2], [3] Calabi studied minimal surfaces in Euclidean spheres, and in [4], [5] Chern studied minimal immersions of the two-sphere into S^4 and more general spaces of constant curvature. Given a minimal immersion $X: M^2 \to S^n$, where M^2 is assumed oriented and is given the unique complex structure compatible with the orientation and the metric on M^2 induced by the immersion, they found that they could construct a holomorphic quartic form Q_X on M^2 from the second fundamental form of the immersion. If $M^2 = S^2$, then the Riemann-Roch theorem shows that $Q_X \equiv 0$. Exploiting this fact, Calabi and Chern were able to prove extensive results concerning minimal immersions of S^2 into S^n . In the present paper, immersions $X: M^2 \to S^n$ satisfying $Q_X \equiv 0$ are referred to as *superminimal* immersions. In an unpublished work, the author has shown that the over-determined system of partial differential equations whose solutions are the superminimal immersions is *involutive* in Cartan's sense, so one expects a good local theory.

Received December 7, 1981.