THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE

RICHARD S. HAMILTON

INDEX

1.	Introduction
2.	Notations and conventions
3.	The evolution equation
4.	Solution for a short time
5.	Evolution equations with an integrability condition
6.	Weakly parabolic linear systems
7.	Evolution of the curvature
8.	Curvature in dimension three
9.	Preserving positive Ricci curvature
10.	Pinching the eigenvalues
11.	The gradient of the scalar curvature
12.	Interpolation inequalities for tensors
13.	Higher derivatives of the curvature
14.	Long time existence
15.	Controlling $R_{\text{max}}/R_{\text{min}}$
16.	Estimating the normalized equation
17.	Exponential convergence

1. Introduction

Our goal in this paper is to prove the following result.

1.1 Main Theorem. Let X be a compact 3-manifold which admits a Riemannian metric with strictly positive Ricci curvature. Then X also admits a metric of constant positive curvature.

All manifolds of constant curvature have been completely classified by Wolf [6]. For positive curvature in dimension three there is a pleasant variety of examples, of which the best known are the lens spaces $L_{p,q}$. Wolf gives five

Received December 21, 1981.