MINIMAL SETS OF FAMILIES OF VECTOR FIELDS ON COMPACT SURFACES

JORGE HOUNIE

1. Introduction

Let *M* be a compact connected smooth manifold of dimension two, and consider a subgroup G of the group of diffeomorphisms of M. A set $\Omega \subset M$ is G-invariant if $g\Omega \subset \Omega$ for all g in G. A set is said to be G-minimal if it is closed G-invariant nonempty, and contains no such proper subset. Let D be a set of smooth vector fields on M , and consider the group G_D generated by the one-parameter group whose infinitesimal generators are the elements of *D.* When *D* contains exactly one vector field, a well-known theorem of Schwartz [5] shows that a G_p -minimal set is either a point, a homeomorph of S^1 or all of *M* (in the last case *M* must be homeomorphic to a torus T^2). The purpose of this paper is to extend this result to arbitrary families of vector fields.

Theorem 1. *Let M be a compact connected two-dimensional smooth manifold.* Let D be a set of smooth vector fields on M, and consider a G_D -minimal set $\Omega \subset M$. Then Ω must be one of the following:

(a) *a point which is a common zero of the vector fields of D;*

(b) a G_D -orbit homeomorphic to S^1 ;

(c)allofM.

Proof. Let $m \in \Omega$, and denote by $\gamma(m)$ the G_p -orbit of m, i.e., the set of points of the form $g(m)$, $g \in G_D$. By a theorem of Sussmann [7], $\gamma(m)$ is a smooth connected paracompact submanifold of *M* (with a natural differentia ble structure) of dimension $k, 0 \le k \le 2$. All vector fields in *D* are tangent to γ(m). If *k —* 0, *y(m)* is a point and we have (a). If *k =* 2, *y(m)* is open in *M.* Then $\overline{\gamma(m)}\setminus\gamma(m)$ is a closed invariant proper subset of Ω , so $\overline{\gamma(m)} = \gamma(m) =$ $\Omega = M$. This gives (c). If $k = 1$, $\gamma(m)$ is homeomorphic to S^1 or **R**. In the first case we get (b). Assume that $\gamma(m)$ is homeomorphic to **R**, and consider $\overline{\gamma(m)} = \Omega$. If the interior of Ω is nonempty, we conclude as before that $\Omega = M$. The theorem will be proved if we show that Ω cannot be nowhere dense when $\gamma(m)$ is homeomorphic to **R**. Let us reason by contradiction, and assume that Ω is nowhere dense.

Communicated by R. Bott, April 10, 1981. The author was partially supported by CNP_q, Brazil.