MINIMAL SETS OF FAMILIES OF VECTOR FIELDS ON COMPACT SURFACES

JORGE HOUNIE

1. Introduction

Let M be a compact connected smooth manifold of dimension two, and consider a subgroup G of the group of diffeomorphisms of M. A set $\Omega \subset M$ is G-invariant if $g\Omega \subset \Omega$ for all g in G. A set is said to be G-minimal if it is closed G-invariant nonempty, and contains no such proper subset. Let D be a set of smooth vector fields on M, and consider the group G_D generated by the one-parameter group whose infinitesimal generators are the elements of D. When D contains exactly one vector field, a well-known theorem of Schwartz [5] shows that a G_D -minimal set is either a point, a homeomorph of S^1 or all of M (in the last case M must be homeomorphic to a torus T^2). The purpose of this paper is to extend this result to arbitrary families of vector fields.

Theorem 1. Let M be a compact connected two-dimensional smooth manifold. Let D be a set of smooth vector fields on M, and consider a G_D -minimal set $\Omega \subset M$. Then Ω must be one of the following:

(a) a point which is a common zero of the vector fields of D;

(b) a G_{D} -orbit homeomorphic to S^{1} ;

(c) all of M.

Proof. Let $m \in \Omega$, and denote by $\gamma(m)$ the G_D -orbit of m, i.e., the set of points of the form g(m), $g \in G_D$. By a theorem of Sussmann [7], $\gamma(m)$ is a smooth connected paracompact submanifold of M (with a natural differentiable structure) of dimension $k, 0 \le k \le 2$. All vector fields in D are tangent to $\gamma(m)$. If k = 0, $\gamma(m)$ is a point and we have (a). If k = 2, $\gamma(m)$ is open in M. Then $\overline{\gamma(m)} \setminus \gamma(m)$ is a closed invariant proper subset of Ω , so $\overline{\gamma(m)} = \gamma(m) = \Omega = M$. This gives (c). If k = 1, $\gamma(m)$ is homeomorphic to S^1 or \mathbf{R} . In the first case we get (b). Assume that $\gamma(m)$ is nonempty, we conclude as before that $\Omega = M$. The theorem will be proved if we show that Ω cannot be nowhere dense when $\gamma(m)$ is homeomorphic to \mathbf{R} . Let us reason by contradiction, and assume that Ω is nowhere dense.

Communicated by R. Bott, April 10, 1981. The author was partially supported by CNP_q, Brazil.