DIVISION ALGEBRAS AND FIBRATIONS OF SPHERES BY GREAT SPHERES

C. T. YANG

Dedicated to Professor Buchin Su on his 80th birthday

Smooth fibrations of spheres by great spheres occur naturally in the study of the Blaschke conjecture. In fact, if M is a Blaschke manifold, m is a point of M, $T_m M$ is the tangent space of M at m, $\exp_m: T_m M \to M$ is the exponential map at m, and $\operatorname{Cut}(m)$ is the cut locus of m in M, then $\exp_m^{-1}(\operatorname{Cut}(m))$ is a sphere S_m in $T_m M$ of center 0, and $\exp_m: S_m \to \operatorname{Cut}(m)$ is a smooth great sphere fibration of the sphere S_m . For general information of the Blaschke conjecture, see [2].

If **K** is the real, complex, quaternionic or Cayley algebra, *n* is the dimension of **K** as a euclidean space, which is 1,2,4 or 8, and S^{2n-1} is the unit (2n-1)-sphere in the euclidean 2n-space $\mathbf{K} \times \mathbf{K}$, then there is a natural smooth great (n-1)-sphere fibration of S^{2n-1} such that any $(u, w), (u', w') \in$ S^{2n-1} belong to the same fibre iff either w = w' = 0 or $uw^{-1} = u'w'^{-1}$. When n > 1, this fibration, as well as isomorphic ones, is often referred as the *Hopf* fibration. Related to this result, Adams' theorem [1] says that a smooth fibration of S^{2n-1} by (n-1)-spheres can occur only when n = 1, 2, 4 or 8, and a classical theorem of Hurwitz [4] says that any division algebra **K**, which possesses a norm such that for any $v, w \in \mathbf{K}$, |vw| = |v| |w|, must be the real, complex, quaternionic or Cayley algebra. If n = 1 or 2, then any *n*-dimensional division algebra is the real or complex algebra, and any fibration of S^{2n-1} by (n-1)-spheres is unique up to an isomorphism. Hence in these cases, the correspondence between *n*-dimensional division algebras and smooth great (n-1)-sphere fibrations of S^{2n-1} is trivial.

In this paper, we show that for n = 4 or 8, each *n*-dimensional division algebra **K** determines a smooth great (n - 1)-sphere fibration of S^{2n-1} , and every smooth great (n - 1)-sphere fibration of S^{2n-1} , up to an isomorphism, is determined by an *n*-dimensional division algebra **K**. However, it is possible

Received December 23, 1981. The author is supported in part by the National Science Foundation.