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Smooth fibrations of spheres by great spheres occur naturally in the study of
the Blaschke conjecture. In fact, if M is a Blaschke manifold, m is a point of
M, TmM is the tangent space of M at m, exρw: TmM -> M is the exponential
map at m, and Cut(w) is the cut locus of m in M, then exp^(Cut(m)) is a
sphere Sm in TmM of center 0, and expw: Sm -» Cut(w) is a smooth great sphere
fibration of the sphere Sm. For general information of the Blaschke conjecture,
see [2].

If K is the real, complex, quaternionic or Cayley algebra, n is the dimension
of K as a euclidean space, which is 1,2,4 or 8, and S2n~ι is the unit
(In — l)-sphere in the euclidean 2«-space K X K, then there is a natural
smooth great (n — l)-sphere fibration of S2n~x such that any (w, w), (u\ w') G
S 2 "" 1 belong to the same fibre iff either w = w' = 0 or uw~λ — u'W~λ. When
n > 1, this fibration, as well as isomorphic ones, is often referred as the Hopf
fibration. Related to this result, Adams' theorem [1] says that a smooth
fibration of S2n~λ by (n — l)-spheres can occur only when n— 1,2,4 or 8,
and a classical theorem of Hurwitz [4] says that any division algebra K, which
possesses a norm such that for any t>, w E K, | vw | = | v \ | w \ , must be the real,
complex, quaternionic or Cayley algebra. If n — 1 or 2, then any ^-dimensional
division algebra is the real or complex algebra, and any fibration of S2n~x by
(n — l)-spheres is unique up to an isomorphism. Hence in these cases, the
correspondence between ^-dimensional division algebras and smooth great
(n — l)-sphere fibrations of S 2 "" 1 is trivial.

In this paper, we show that for n — 4 or 8, each ^-dimensional division
algebra K determines a smooth great (n — l)-sphere fibration of S2n~\ and
every smooth great (n — l)-sphere fibration of S2n~\ up to an isomorphism, is
determined by an ^-dimensional division algebra K. However, it is possible
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