CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD. II

BANG-YEN CHEN

1. Introduction

A submanifold N in a Kaehler manifold \tilde{M} is called a CR-submanifold if (1) the maximal complex subspace \mathfrak{N}_x of the tangent space $T_x\tilde{M}$ containing in $T_xN, x \in N$, defines a differentiable distribution on N, and (2) the orthogonal complementary distribution \mathfrak{N}^{\perp} of \mathfrak{N} is a totally real distribution, i.e., $J\mathfrak{N}_x^{\perp} \subseteq T_x^{\perp}N, x \in N$, where J denotes the almost complex structure of \tilde{M} , and $T_x^{\perp}N$ the normal space of N in \tilde{M} at x.

In the first part of this series, we have obtained several fundamental results for *CR*-submanifolds. In the present part, we shall continue our study on such submanifolds. In particular, we prove that (a) the holomorphic distribution \mathfrak{P} of any *CR*-submanifold in a Kaehler manifold is minimal (Proposition 3.9); (b) every leaf of the holomorphic distribution of a mixed foliate proper *CR*-submanifold in a complex hyperbolic space H^m is Einstein-Kaehlerian (Proposition 4.4); and (c) every *CR*-submanifold with semi-flat normal connection in $\mathbb{C}P^m$ is either an anti-holomorphic submanifold in some totally geodesic $\mathbb{C}P^{h+p}$ of $\mathbb{C}P^m$ or a totally real submanifold (Theorem 5.11).

2. Preliminaries

Let \tilde{M}^m be a complex *m*-dimensional Kaehler manifold with complex structure *J*, and *N* be a real *n*-dimensional $(n \ge 2)$ Riemannian manifold isometrically immersed in \tilde{M}^m . We denote by \langle , \rangle the metric tensor of \tilde{M}^m as well as that induced on *N*. Let ∇ and $\tilde{\nabla}$ be the covariant differentiations on *N* and \tilde{M} respectively. Then the Gauss and Weingartan formulas for *N* are given respectively by

- (2.1) $\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$
- (2.2) $\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi,$

Communicated by K. Yano, March 5, 1981.