CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD. I

BANG-YEN CHEN

1. Introduction

Let \tilde{M} be a Kaehler manifold with complex structure J, N a Riemannian manifold isometrically immersed in \tilde{M} , and \mathfrak{D}_x the maximal holomorphic subspace of the tangent space T_xN of N. If the dimension of \mathfrak{D}_x is the same for all x in N, \mathfrak{D}_x gives a holomorphic distribution \mathfrak{D} on N.

Recently, A. Bejancu [1] introduced the notion of a *CR*-submanifold of \tilde{M} as follows. A submanifold N in a Kaehler manifold \tilde{M} is called a *CR*-submanifold if there exists on N a differentiable holomorphic distribution \mathfrak{V} such that its orthogonal complement \mathfrak{V}^{\perp} is a totally real distribution, i.e., $J \mathfrak{V}_x^{\perp} \subseteq T_x^{\perp} N$.

In this series of papers, we shall obtain some fundamental properties of CR-submanifolds in Kaehler manifolds.

2. Preliminaries

Let \tilde{M} be a complex *m*-dimensional Kaehler manifold with complex structure *J*, and *N* a real *n*-dimensional Riemannian manifold isometrically immersed in \tilde{M} . We denote by \langle , \rangle the metric tensor of \tilde{M} as well as that induced on *N*. Let ∇ and $\tilde{\nabla}$ be the covariant differentiations on *N* and \tilde{M} , respectively. Then the Gauss and Weingarten formulas for *N* are given respectively by

(2.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$

(2.2)
$$\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi$$

for any vector fields X, Y tangent to N and any vector field ξ normal to N, where σ denotes the second fundamental form, and D the linear connection, called the normal connection, induced in the normal bundle $T^{\perp}N$. The second fundamental tensor A_{ξ} is related to σ by

(2.3)
$$\langle A_{\xi}X, Y \rangle = \langle \sigma(X, Y), \xi \rangle.$$

Communicated by K. Yano, September 9, 1980.