A SINGULAR MAP OF A CUBE ONTO A SQUARE

R. KAUFMAN

An example is given of a transformation F of class C^{1} on a cube in R^{3}, of rank at most 1 everywhere, onto a square. With merely verbal changes, the example operates from R^{n+1} to R^{n} for $n=3,4,5 \ldots$ The construction begins with a Cantor set $C(\beta)$ in $R^{3} ; C(\beta)$ can be found by the standard method but the one outlined in the first paragraph leads quickly to a system of boundaries $B\left(n_{1}, \ldots, n_{k}\right)$, the main geometrical curiosity of this example.

We learned of this kind of problem from Kevin Grasse and Felix Albrecht; it was stated by M. Hirsch (Differential topology, Graduate Texts in Math. Vol. 33, Springer, Berlin, 1976, p. 74).

A system of cubes. For each number β in $(0,1 / 2)$ we define a method of constructing 8 subcubes in each cube in R^{3}. Let the larger cube be defined by the inequalities $\left|x_{i}-c_{i}\right| \leqslant L / 2,1 \leqslant i \leqslant 3$. Then the subcubes are defined by $\left|x_{i}-c_{i} \pm L / 4\right| \leqslant \beta L / 2$, so there are 8 in all; any two have a distance $\geqslant L / 2-\beta L$, and all have a distance $\geqslant L / 4-\beta L / 2$ from the boundary of the large cube.

Beginning with the cube $I_{0}:\left|x_{i}\right| \leqslant 1$, we define cubes $I\left(n_{1}, \ldots, n_{k}\right)$, wherein $I\left(n_{1}\right)$ are the 8 cubes obtained from I_{0}, etc., and each $n_{k}=1$, $2, \ldots, 8$. Distinct cubes $I\left(n_{1}, \ldots, n_{k}\right)$ and $I\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right)$ have a distance at least $\beta^{k-1}-2 \beta^{k}$. In the case of cubes $I\left(n_{1}, \ldots, n_{k}\right)$ and $I\left(n_{1}^{\prime}, \ldots, n_{j}^{\prime}\right)$ with $k \leqslant j$, the situation is more complicated. When the cubes are disjoint we have the lower bound $\beta^{k-1}(1-2 \beta)$ found above; when the larger contains the smaller, the distance between their boundaries exceeds $\beta^{k}(1 / 2-\beta)$. We denote the boundary of I_{0} by B_{0}, and the boundary of $I\left(n_{1}, \ldots, n_{k}\right)$ by $B\left(n_{1}, \ldots, n_{k}\right)$. The Cantor set defined by the cubes is denoted $C(\beta)$ and we require $\beta^{2}>1 / 8$, for reasons to appear presently.

A mapping of $C(\beta)$. Let R_{0} be any closed cube in R^{2}, and the rectangles $R\left(n_{1}, \ldots, n_{k}\right)$ be defined by this variant of the process used above. When k is even (or $R=R_{0}$) we divide $R\left(n_{1}, \ldots, n_{k}\right)$ by 7 vertical lines into 8 congruent rectangles; when k is odd we divide by horizontal lines. Thus $R\left(n_{1}, \ldots, n_{k}\right)$ has diameter $\leqslant C 2^{-3 k / 2}$.

