SOME TOPOLOGICAL OBSTRUCTIONS TO BOCHNER-KAEHLER METRICS AND THEIR APPLICATIONS

BANG-YEN CHEN

1. Introduction

Let M^n be a compact (complex) manifold of complex dimension *n*. Let *L* be a line bundle over M^n . Denote by $H^i(M^n, L)$ the *i*-th cohomology group with coefficients in the sheaf of germs of local holomorphic sections in *L*, and by *K* and 1 the canonical line bundle and the trivial line bundle over M^n respectively. The *m*-genus or the plurigenera of M^n are given by

$$P_m = \dim H^0(M^n, mK) .$$

where $mk = K \otimes \cdots \otimes K$ (*m* copies). P_1 is also called the geometric genus p_g of *M*. By the Serre duality theorem:

$$H^{i}(M^{n}, L) \cong H^{n-i}(M^{n}, L^{-1} \otimes K)$$

we also have $p_g = \dim H^n(M^n, 1)$. Put

$$g_i = \dim H^i(M^n, 1) \; .$$

Then g_1 is called the irregularity of M^n , denoted by q. The arithmetic genus is then given by

$$\mathfrak{a} = 1 - g_1 + g_2 - \cdots + (-1)^n g_n \, .$$

In particular, if M^n is a surface (we call a compact connected complex surface free from singularities simply a *surface*), $\alpha = 1 - q + p_g$. It is well-known that α, q, P_m are birational invariants.

In the following we denote by τ , χ , b_i and c_i the Hirzebruch signature, the Euler characteristic, the *i*-th Betti number and the *i*-th Chern class of M^n respectively. Let $c \in H^{2n}(M^n, Z)$ be a 2*n*-th cohomology class of M^n . We shall also regard c as the integer obtained from the cohomology class c by taking its value on the fundamental cyclic of M^{2n} .

Let g be a Kaehler metric on M^n . We denote by $R_{ik\bar{l}}^i$, $R_{i\bar{j}}$ and ρ respectively

Communicated by K. Yano, August 16, 1976, and, in revised form, January 12, 1978. Partially supported by NSF Grant MCS 76-06138.