UMBILICAL SUBMANIFOLDS OF SASAKIAN SPACE FORMS

DAVID E. BLAIR & LIEVEN VANHECKE

1. The purpose of this note is to prove the following theorem:

Theorem. Let N^n , $n \ge 3$, be an umbilical submanifold of a Sasakian space form $M^{2n+1}(c)$. If the mean curvature vector is parallel in the normal bundle, then N^n is one of the following:

(i) N^n is a real space form immersed as an integral submanifold of the contact distribution, and N^n is totally geodesic when n = m.

(ii) The characteristic vector field of the contact structure is tangent to N^n , N^n is totally geodesic and N^n is a Sasakian space form with the same ϕ -sectional curvature.

(iii) c = 1 and N^n is a real space form.

If the mean curvature vector is not parallel, then

(iv) N^n is an anti-invariant submanifold, and if N^n has constant mean curvature, then c < -3 and N^n admits a codimension 1 foliation by umbilical submanifolds of type (i).

The four cases of the theorem do occur. In fact, the first three can occur in the odd-dimensional sphere $S^{2m+1}(1)$; for example $S^{2m+1}(1)$ admits a great *m*sphere which is an integral submanifold of the usual contact structure [1] and a codimension 2 great sphere such that the characteristic vector field is tangent and the sphere inherits the contact structure of S^{2m+1} . Sasakian submanifolds of Sasakian manifolds have been studied quite extensively; see e.g. [2], [4]. In \mathbf{R}^{2m+1} with coordinates (x^i, y^i, z) , the usual contact form $\eta = \frac{1}{2}(dz - \sum y^i dx^i)$ together with the Riemannian metric $G = \eta \otimes \eta + \frac{1}{4} \sum ((dx^i)^2 + (dy^i)^2)$ is a Sasakian structure with constant ϕ -sectional curvature equal to -3. The vector fields $\partial/\partial y^i$ span an integrable distribution whose leaves are integral submanifolds of the contact distribution $\eta = 0$. Moreover these submanifolds are totally geodesic (see e.g. [1]) and G restricted to these submanifolds is just the Euclidean metric. Hence taking an (n - 1)-sphere $\sum (y^i)^2 = \text{constant}$ we have an umbilical submanifold in $\mathbf{R}^{2m+1}(-3)$. We devote § 5 to an example of type (iv).

2. Let *M* be a (2m + 1)-dimensional contact manifold with contact form η , i.e., $\eta \wedge (d\eta)^m \neq 0$. It is well known that a contact manifold admits a vector field ξ , called the *characteristic vector field*, such that $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$.

Communicated by K. Yano, October 2, 1976.