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RESIDUES OF SINGULARITIES OF
HOLOMORPHIC FOLIATIONS

BOHUMIL CENKL

1. This note contains an algorithm for the computation of the residues
associated with the singularities of holomorphic foliations on compact com-
plex analytic manifolds. We assume that the singular set is a closed holo-
morphic subvariety, and we drop the requirement, which is essential in [1],
[3], that the dimension of the singular subvariety is one less than the dimen-
sion of the leaves.

First of all let us briefly review the known results in this direction. Let M
be a compact complex analytic manifold of complex dimension #, T the holo-
morphic tangent bundle, and F a holomorphic vector bundle of fibre dimen-
sion k, 1 < k < n. Denote by T and F the sheaves of germs of holomorphic
sections of T and F respectively. Suppose that f: F — T is a holomorphic vector
bundle map such that: (1) the singular set >, is a closed holomorphic sub-
variety of M, (2) f(F)|M — 3, is a holomorphic foliation & of codimension
n—k, (3 dim, >, =k —r, r > 1, (4) the subsheaf f(F) of the sheaf T is
integrable and full. See [1, p. 282]. The integrability guarantees that > is a
singularity of a foliation on M, and the fullness rules out any unessential sin-
gularities. Let ¢ be a symmetric homogeneous polynomial of degree /, n — k
<1< n, in n variables x,, - - -, x,, and ¢ the unique polynomial in the ele-
mentary symmetric functions ¢, - - -, ¢, of x,, - - -, x, such that (e, - - -, a;)
= (xp, -+, Xp). Let @ = T/f(F), c(Q) = the jth Chern class of Q, and ¢(Q)
= &(CI(Q), -+, ¢(Q)). Then there exists a homology class Res, (%, >)) e
H,,_,(3;; C) which depends only on ¢ and on the local behavior of # near
21, [1]. Moreover, if p,: Hy,_y(35; C) — H® (M; C) is the inclusion followed
by the Poincaré duality, z, Res, (#, 3) = ¢(Q), ([1] and [3] for k = 1). One
of the basic problems is to compute this class in terms of the “local behavior”
of % near },. All the results have been obtained ([1], [3]) under the assumption
r =1, i.e.,, dimg >, 4+ 1 = dimension of the leaves of & .

For r =1 and k = 1 we have a foliation # by holomorphic curves with
a singularity set ), being isolated zeros of a holomorphic vector field X, de-
fining &. If A(p), - - -, 2,(p) are the eigenvalues of the automorphism of T,
p € 2, defined by X, then under the obvious regularity assumptions there
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