ON THE THEORY OF NORMAL VARIATIONS

BANG-YEN CHEN \& KENTARO YANO

1. Introduction

Let M^{n} be an n-dimensional submanifold of a Riemannian manifold M^{m}. An infinitesimal deformation of M^{n} in M^{m} along a normal vector field ξ is called a normal variation. In this paper we shall study some fundamental properties of nomal variations.

In § 3 we shall prove that the submanifold M^{n} is totally geodesic (respectively, totally umbilical or minimal) if and only if every normal variation of M^{n} is isometric (respectively, conformal or volume-preserving). In $\S 4$ we shall prove that the normal variation given by ξ is affine if and only if the second fundamental tensor with respect to ξ is parallel. In $\S 5$ we shall show that the normal variation given by ξ carries a totally geodesic (respectively, totally umbilical or minimal) submanifold into a totally geodesic (respectively, totally umbilical or minimal) submanifold when and only when ξ satisfies certain second order differential equations. In the last section, we shall study H-variations and H-stable submanifolds, and obtain a characterization of H stable submanifolds with some applications; for example, we prove that an H stable submanifold of a positively curved manifold has parallel mean curvature vector if and only if the submanifold is minimal.

2. Preliminaries, [1]

Let M^{m} be an m-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, and denote by $g_{j i}, \Gamma_{j i}^{h}, V_{j}, K_{k j i}{ }^{h}, K_{j i}$ and K the metric tensor, the Christoffel symbols formed with $g_{j i}$, the operator of covariant differentiation with respect to $\Gamma_{j i}^{h}$, the curvature tensor, the Ricci tensor and the scalar curvature of M^{m} respectively, where and in the sequel, the indices h, i, j, k, \cdots run over the range $\{\overline{1}, \overline{2}, \cdots, \bar{m}\}$.

Let M^{n} be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; y^{a}\right\}$, and denote by $g_{c b}, \Gamma_{c b}^{a}, \nabla_{c}, K_{d c b}{ }^{a}, K_{c b}$ and K^{\prime} the corresponding quantities of M^{n}, where and in the sequel the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, n\}$.

Suppose that M^{n} is isometrically immersed in M^{m} by the immersion $i: M^{n} \rightarrow$ M^{m}, and identify $i\left(M^{n}\right)$ with M^{n}. Represent the immersion by

