THE STRUCTURE OF SOLUTIONS TO PLATEAU'S PROBLEM IN THE *n*-SPHERE

JOHN E. BROTHERS

1. Introduction

Let T be a k-dimensional rectifiable current in the unit sphere S^n which is absolutely area minimizing with respect to S^n and is such that ∂T lies in a closed m-dimensional geodesic hemisphere Q. We will present results concerning the location of T (Theorems 3.5 and 4.4) and, in case k = m, the structure of T (Theorem 4.5). The primary difficulty arises from the assumption that Q is closed; simple examples using lines of longitude on S^2 show that not only is T not uniquely determined by ∂T , but there may be a continum of solutions to the Plateau problem for a fixed boundary lying in Q.

Our results are relevant to the study of the structure of oriented tangent cones at points on the boundary of an area minimizing current in \mathbb{R}^n (see [3, 5.2]), and this was our principal motivation for undertaking this study. An application to this problem is given in § 5.

In order to obtain our main results we first prove a "location theorem" for minimizing and minimal (or stationary) currents of arbitrary dimension in S^n which is a formulation for currents in the sphere of the classical idea that a bounded minimal submanifold of R^n must lie in the convex hull of its boundary (a simple proof of which is also given). Such results were first obtained by Blaine Lawson [7] for smooth minimal immersions of manifolds of arbitrary dimension, and for pseudo-immersions in the two dimensional case. We will use his formulation of the notion of convex hull of a subset of S^n . The minimal "surfaces" which we consider include Lawson's as special cases; however, because his proofs are centered around use of a maximal principle, his results are stronger than ours.

The author is indebted to his colleague Benjamin Halpern for several stimulating discussions which lead to the use of the function F in the proof of Sheeting lemma 4.4 and Theorem 4.5. This construction has also been recently applied by Sandra Paur in her study of boundary behavior of integral currents [8].

Received November 11, 1974, and, in revised form, April 4, 1975. This work was supported in part by NSF grants GP-36418X1 and GP-33547.