C-TOTALLY REAL SUBMANIFOLDS

SEIICHI YAMAGUCHI, MASAHIRO KON & TOSHIHIKO IKAWA

0. Introduction

C. S. Houh [5], S. T. Yau [10], B. Y. Chen and K. Ogiue [3] have studied totally real submanifolds (anti-holomorphic submanifolds) in an almost Hermitian manifold or a Kählerian manifold of constant holomorphic sectional curvature, and obtained many interesting results.

On the other hand, in the recent paper [8] we have investigated the C-totally real submanifolds in a Sasakian manifold with constant ϕ -holomorphic sectional curvature.

In § 1 we recall some basic formulas for submanifolds in Riemannian manifolds. In § 2 we shall state the fundamental property of C-totally real submanifolds in Sasakian manifolds. In the last section, we investigate C-totally real minimal submanifolds M^n in a constant ϕ -holomorphic sectional curvature and show the pinching theorem for the length of the second fundamental form by using the method of J. Simons [7].

1. Preliminaries

Let \overline{M} be a Riemannian manifold of dimension n + p, and M an *n*-dimensional submanifold of \overline{M} . Let \langle , \rangle be the metric tensor field on \overline{M} as well as the metric induced on M. We denote by \overline{V} the covariant differentiation in \overline{M} , and by \overline{V} the covariant differentiation in M determined by the induced metric on M. Let $\mathfrak{X}(\overline{M})$ (resp. $\mathfrak{X}(M)$) be the Lie algebra of vector fields on \overline{M} (resp. M), and $\mathfrak{X}^{\perp}(M)$ the set of all vector fields normal to M.

The Gauss-Weingarten formulas are given by

(1.1)
$$\begin{aligned} \overline{V}_X Y &= \overline{V}_X Y + B(X,Y) ,\\ \overline{V}_X N &= -A^N(X) + D_X N , \quad X,Y \in \mathfrak{X}(M), N \in \mathfrak{X}^\perp(M) , \end{aligned}$$

where D is the connection in the normal bundle. Both A and B are called the second fundamental form of M, and satisfy $\langle A^N(X), Y \rangle = \langle B(X, Y), N \rangle$.

The curvature tensors associated with \overline{V} , \overline{V} and D are defined by

Communicated by K. Yano, June 13, 1974.