HARMONIC AND RELATIVELY AFFINE MAPPINGS

KENTARO YANO & SHIGERU ISHIHARA

The theory of harmonic mappings of a Riemannian space into another has been initiated by Eells and Sampson [2] and studied by Chern [1], Goldberg [1], [3], T. Ishihara [3], [5] and others.

In this paper, we study projective and affine mappings of a manifold with symmetric affine connection into another and harmonic and relatively affine mappings of a Riemannian space into another.

1. Differentiable mappings of a manifold with symmetric affine connection into another

Let (M, \overline{V}) be a manifold of dimension n with symmetric affine connection \overline{V} , and (N, \overline{V}) a manifold of dimension p with symmetric affine connection \overline{V} , where $n, p \ge 2$. Let there be given a differentiable mapping $f: M \to N$ which we denote sometimes by $f: (M, \overline{V}) \to (N, \overline{V})$. Manifolds, mappings and geometric objects which we discuss in this paper are assumed to be of differentiability class C^{∞} . Take coordinate neighborhoods $\{U; x^h\}$ of M and $\{\overline{U}, y^a\}$ of N in such a way that $f(U) \subset \overline{U}$, where $(x^h) = (x^1, x^2, \dots, x^n)$ and $(y^a) = (y^{\overline{1}}, y^{\overline{2}}, \dots, y^{\overline{p}})$ are local coordinates of M and N respectively. The indices h, i, j, k, l, m, r, s, t run over the range $\{1, 2, \dots, n\}$, and the indices $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ the range $\{\overline{1}, \overline{2}, \dots, \overline{p}\}$. The summation convention will be used with respect to these two systems of indices. Suppose that $f: (M, \overline{V}) \to (N, \overline{V})$ is represented by equations

(1.1)
$$y^{\alpha} = y^{\alpha}(x^1, x^2, \cdots, x^n)$$

with respect to $\{U, x^h\}$ and $\{\overline{U}, y^{\alpha}\}$. We put

(1.2)
$$A_i^{\alpha} = \partial_i y^{\alpha}(x^1, x^2, \cdots, x^n) ,$$

where $\partial_i = \partial/\partial x^i$. Then the differential df of the mapping f is represented by the matrix (A_i^{α}) with respect to the local coordinates (x^h) and (y^{α}) of M and N.

When a function ρ , local or global, is given in N, throughout the paper we shall identify ρ with the function $\rho \circ f$ induced in M. We denote by Γ_{ji}^h the

Communicated February 4, 1974.