A THEOREM OF GÉOMÉTRIE FINIE

WILLIAM F. POHL

1. Introduction

In a paper in the Kodaira *Festschrift* R. Thom [6] gave a proof, admittedly incomplete, of the following. Let $V^{2k} \subset P_{n+k}$ be a real compact embedded submanifold of real dimension 2k of a complex projective space of complex dimension n + k. Suppose there exists an everywhere dense subset $U \subset G_{n,k}$ of the Grassmannian of all complex projective subspaces of complex dimension n of P_{n+k} , such that if $u \in U$ then $u \cap V^{2k}$ consists of exactly m points, where m is independent of u. Then V^{2k} is an algebraic subvariety of P_{n+k} ; the flat case is excluded. In this paper we give a complete and corrected statement and proof of this result. Moreover, we will allow V^{2k} to have certain singularities.

By a semi-real flat L we mean the closure in P_{n+k} of an affine subspace $L_0
ightharpoonrightarrow R^{2(n+k)}$, where we make the canonical identification $R^{2(n+k)} = C^{n+k}
ightharpoonrightarrow P_{n+k}$. These may be classified in the following way. Apply a complex affine transformation (which is also a real affine transformation) to make L_0 pass through the origin. Let $I: C^{n+k} \to C^{n+k}$ be the multiplication by $i = \sqrt{-1}$. We call the real dimension of $L_0 \cap I(L_0)$ the type of L. If a complex projective transformation sends L into a semi-real flat, then it preserves the type, so that a semi-real flat is classified up to a complex projective transformation by its dimension j and its type t, where $0 \le t \le j$ with every such even t possible. If t = j, then L is a complex projective subspace, and if t = 0 then L is complex projectively equivalent to the real projective space P^j with its canonical embedding $P^j \subset P_j \subset P_{n+k}$. In the intermediate cases 0 < t < j, L is singular; in fact it is a kind of cone.

We say that a continuous map $f: X \to Y$ of topological spaces is *proper* onto its image if for every compact subset $A \subset f(X), f^{-1}(A)$ is compact. We now state the main result.

Theorem. Let $V \subset P_{n+k}$ be a compact subset. Suppose there exists a closed subset $S \subset V$ such that the closure of V - S is all of V, and an immersion $f: M \to P_{n+k}$ of class C^4 of a differentiable manifold M of (real) dimension 2k which maps M onto V - S and which is proper onto its image. Suppose further:

1) there exists an everywhere dense subset $T \subset G_{n+1,k-1}$ such that if $v \in T$

Received October 5, 1973, and, in revised form, November 18, 1974. Research supported by the National Science Foundation under Grant GP-29321.