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COMPACT QUOTIENT SPACES OF C2 BY AFFINE
TRANSFORMATION GROUPS

TATSUO SUWA

The purpose of this paper is to classify the compact complex surfaces of the
form C2/G, where G is a properly discontinuous and fixed point free group of
affine transformations of the two-dimensional complex vector space C2. Except
for the use of some theorems on numerical characters of a compact complex
surface, the method is mostly elementary.

§ 1 contains preliminary considerations on some properties of a fixed point
free affine transformation group of C2. In § 2 we perform the classification.
Denoting by bλ the first Betti number of the quotient space S = C2/G, we
prove that if bx = 4 then S is a complex torus (Theorem 1), if bx — 3 then S
is a fiber bundle of elliptic curves over an elliptic curve (Theorem 2), if bγ — 2
then S is a hyperelliptic surface (Theorem 3), and if bλ = 1 then S is an ellip-
tic surface over the projective line with multiple singular fibers (Theorem 4).

1. A fundamental lemma

Let G denote a group of affine transformations of the two-dimensional com-
plex vector space C2. Assume the action of G is (A) properly discontinuous,
i.e., for any pair (K19 K2) of compact subsets in C2, the set {g e G | gKx Γϊ K2Φίd}
is finite, and (B) fixed point free, i.e., for all g e G, g Φ 1, g has no fixed
points. Thus the quotient space C2/G is a complex manifold of complex dimen-
sion 2. Finally we assume (C) C2/G is compact. The problem is to classify the
compact complex surfaces of the form C2/G. In this section we prove a funda-
mental lemma for this purpose.

First of all, each element g of G is expressed by a 3 X 3 matrix:

Mite) cιu{g)
g = a2ί(g) a22(g)

\ 0 0

which acts on C2 = {z \ z = fc, z2)} by
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