SMOOTHNESS OF HOROCYCLE FOLIATIONS

MORRIS W. HIRSCH & CHARLES C. PUGH

1. Introduction

Let SM denote the unit tangent bundle of a compact C^{∞} Riemannian manifold M. Suppose that M has everywhere negative sectional curvature. In [1] Anosov proved that the geodesic flow φ on SM is of a certain type, called "Anosov" by later writers, and defined below.

Associated with any Anosov flow φ is a foliation by "strong stable manifolds"; this is called the *horocycle foliation* in the special case where φ is the geodesic flow on *SM* and *M* has negative curvature. The strong unstable manifolds provide another isomorphic horocycle foliation.

The *leaves* of these foliations are as smooth as the Anosov flow φ , but Anosov showed that the *foliations* are not in general of class C^1 , even when φ is real analytic.¹ However, when *M* has dimension two or the curvature is $\frac{1}{4}$ pinched, we shall prove that the horocycle foliations (and even their tangent plane fields) *are* of class C^1 . In the course of the proof, the fact that "negative curvature \Rightarrow Anosov geodesic flow" falls out naturally. Our methods in §§ 5, 6 resemble those of Anosov and Sinai [2].

This smoothness result was suggested to us by an analogous situation we encountered in [8]; there, we showed that the strong stable manifold foliation of an Anosov diffeomorphism f is of class C^1 provided that either the strong stable manifolds have codimension one in M or the spectrum of Tf is "bunched". These cases are analogous to (i), (ii) below.

Thanks are due to Pat Eberlein, Rob Gardiner, Leon Green, and Joe Wolf for helpful conversations.

2. The smoothness theorem

Let *M* be a C^{∞} compact boundaryless manifold with a C^{∞} Riemann structure \mathscr{R} . The geodesics of \mathscr{R} give rise to the geodesic flow φ on the tangent bundle *TM* of *M*:

Received February 22, 1974. The work of the first author was partially supported by NSF grant #GP-29073, and that of the second author by NSF grant #GP-14519.

¹It is amusing that, to mean "generic", Russian mathematicians, such as Anosov, use a word translated from Russian to English as "rough". Here is an example where roughness is likely to be generic.