A GENERALIZATION OF THE CLOSED SUBGROUP THEOREM TO QUOTIENTS OF ARBITRARY MANIFOLDS

HÉCTOR J. SUSSMANN

1. Introduction

The purpose of this paper is to present a new necessary and sufficient condition for an equivalence relation R on a differentiable manifold M to be regular (i.e., such that the quotient M/R is also a differentiable manifold, and that the canonical projection $M \rightarrow M/R$ is a submersion). Our condition is motivated by a problem of system theory. Given a nonlinear system $\dot{x} = f(x, u)$ together with an "output map" $y = \varphi(x)$, one can associate with every "input" u(t), $(0 \le t \le T)$, and every "initial state" x^0 , an "output" y(t), $(0 \le t \le T)$, defined as follows: let x(t) be the solution of $\dot{x}(t) = f(x(t), u(t))$ for which $x(0) = x^0$, and let $y(t) = \varphi(x(t))$. If, for an input u, the outputs which correspond to two initial states x^0 and x^1 are not identical, we say that *u* distinguishes between x^0 and x^1 . If there is no input which distinguishes between x^0 and x^1 , we say that x^0 and x^1 are *indistinguishable*. If there do not exist states x^0 and x^1 which are indistinguishable but different, we say that the system is observable. Given a nonobservable system whose state space is a manifold M, we would like to "make it observable". The obvious way to achieve this is by taking the quotient M/R, where R is the equivalence relation of indistinguishability, and by letting this quotient be the state space of our new system. For this to be possible it is necessary that R be regular. The necessary and sufficient condition given in Serre [2, Part II, Chap. 3, § 12, Theorem 2] is not easy to verify. However, in situations where there is more structure, R turns out to be regular for a different reason. As an example, consider the system

(1)
$$\dot{X} = (A + uB)X, \quad X \in G,$$
$$y = bX.$$

Here the state space G is a Lie group of $n \times n$ matrices, A and B are matrices in the Lie algebra of G, the inputs are real-valued functions, the variable y takes values in \mathbb{R}^n (viewed as a space of row vectors), and $b \in \mathbb{R}^n$. For each

Communicated by R. S. Palais, November 28, 1973. Work partially supported by NSF Grant No. GP-37488. The author wishes to thank R. Hermann, R. S. Palais and R. W. Brockett for helpful discussions.