FIBRE BUNDLES AND THE EULER CHARACTERISTIC

DANIEL HENRY GOTTLIEB

1. Introduction

For any fibre bundle $F \xrightarrow{i} E \xrightarrow{p} B$ there are three important maps: the projection p, the fibre inclusion i, and the evaluation $\omega: \Omega B \to F$. In this paper we demonstrate formulas for each of these maps involving the Euler-Poincaré number of the fibre.

Let M be a compact topological manifold with possibly empty boundary \dot{M} , $\chi(M)$ the Euler-Poincaré number of M, G any space of homeomorphisms of M with a continuous action on M, $\omega: G \to M$ the evaluation map for some base point, $M \xrightarrow{i} E \xrightarrow{p} B$ any (locally trivial) fibre bundle, and $L \subset B$ a (possibly empty) subcomplex of the CW complex B.

Theorem A. For connected M and any coefficients

$$\chi(M)\omega^* = 0: \tilde{H}^*(M) \to \tilde{H}^*(G)$$
.

Theorem B. There exists a transfer homomorphism $\tau: H^*(E, p^{-1}(L)) \to H^*(B, L)$ such that $\tau \circ p^* = \chi(M)1$ for any coefficients.

Theorem C. There exists a transfer homomorphism $\tau: H_*(B, L) \to H_*(E, p^{-1}(L))$ such that $p_* \circ \tau = \chi(M)1$ for any coefficients.

Special cases of Theorem A were discovered by the author in [3] and [4]. Note that B and C reduce to the classical transfer theorem for covering spaces when M is a finite set of points. Borel proved a version of Theorem B for M a closed connected differentiable manifold and $M \xrightarrow{i} E \xrightarrow{p} B$ an "oriented" fibre bundle with structural group acting differentially on M and cohomology groups with fields of coefficients whose characteristics does not divide $\chi(M)$, [2]. This result was improved by the author in [1] and [3].

All these theorems are consequences of the next. Let \dot{E} be the subspace of E consisting of those points of E which are in the boundaries of the fibres containing them. Then $(M, \dot{M}) \xrightarrow{i} (E, \dot{E}) \xrightarrow{p} B$ is a fibre pair. If \dot{M} is empty, then \dot{E} is empty.

Theorem D. Let M^n be orientable and connected, and assume $\pi_1(B)$ acts

Received August 21, 1973. This research was partially supported by a National Science Foundation grant.