UMBILICAL SUBMANIFOLDS WITH RESPECT TO A NONPARALLEL NORMAL DIRECTION

BANG-YEN CHEN & KENTARO YANO

Let M^n be an *n*-dimensional submanifolds¹ of an (n + 2)-dimensional euclidean space E^{n+2} , and *C* be a unit normal vector field of M^n in E^{n+2} . If the second fundamental tensor in the normal direction *C* is proportional to the first fundamental tensor of the submanifold M^n , then M^n is said to be *umbilical* with respect to the normal direction *C*. The normal direction *C* is said to be *parallel* if the covariant differentiation of *C* along M^n has no normal component, and *C* is said to be *nonparallel* if the covariant differentiation of *C* along M^n has nonzero normal component everywhere.

In a previous paper [1], the authors proved that a submanifold is umbilical with respect to a parallel normal direction C if and only if it is contained either in a hypersphere or in a hyperplane of the euclidean space. In the present paper, we shall study the submanifolds of codimension 2 of a euclidean space which are umbilical with respect to a nonparallel normal direction.

1. Preliminaries

We consider a submanifold M^n of codimension 2 of an (n + 2)-dimensional euclidean space E^{n+2} , and represent it by

$$(1) X = X(\xi^1, \cdots, \xi^n) ,$$

where X is the position vector from the origin of E^{n+2} to a point of the submanifold M^n , and $\{\xi^h\}$ is a local coordinate system in M^n , where and throughout this paper the indices h, i, j, k, \cdots run over the range $\{1, \dots, n\}$.

Put

$$(2)$$
 $X_i = \partial_i X$, $\partial_i = \partial/\partial \xi^i$,

and denote by C and D two mutually orthogonal unit normals to M^n . Then, denoting by V_j the operator of covariant differentiation with respect to the Riemannian metric $g_{ji} = X_j \cdot X_i$ of M^n , we have the equations of Gauss

Communicated June 16, 1972.

¹ Manifolds, mappings, functions, ... are assumed to be sufficiently differentiable, and we shall restrict discussions only to manifolds of dimension n > 2.