THE CONJECTURES ON CONFORMAL TRANSFORMATIONS OF RIEMANNIAN MANIFOLDS

MORIO OBATA

Introduction

Let (M, g) be a Riemannian *n*-manifold with Riemannian metric g. Throughout this paper manifolds under consideration are always assumed to be connected and smooth.

For a smooth function ρ on M, a Riemannian metric $e^{2\rho}g$ is said to be *con*formally related, or conformal, to g. Let h be a smooth map of (M, g) into another Riemannian manifold (M', g'). If the Riemannian metric h^*g' induced on M by h is conformal to g, then h is called a conformal map of (M, g) into (M', g'). It is well-known that h is conformal if and only if it preserves the angle between any two tangent vectors. h remains conformal under any conformal changes of Riemannian metrics on M and M' as well. If h is a conformal diffeomorphism of (M, g) onto (M', g'), then it is called briefly a conformorphism of (M, g) onto (M', g), and (M, g) is said to be conformorphic to (M', g')Via h. If furthermore (M, g) = (M', g'), then h is called a conformal transformation or a conformorphism of (M, g).

It is known that the group C(M, g) of all conformorphisms of (M, g) is a Lie group with respect to the compact-open topology. Let $C_0(M, g)$ denote the connected component of the identity of C(M, g). If g and \overline{g} are conformal to each other, then $C(M, g) = C(M, \overline{g})$. The group I(M, g) of all isometries of (M, g)is a closed subgroup of C(M, g). A subgroup G of C(M, g) is said to be *essential* if G is not contained in $I(M, e^{2\rho}g)$ for any smooth function ρ on M, and is said to be *inessential* otherwise.

In this paper, unless otherwise stated, we always assume dim M > 2, although some of our propositions are valid even for dim M = 2.

There have been two conjectures:

Conjecture I. Let (M, g) be a compact Riemannian n-manifold. Then $C_0(M, g)$ is essential if and only if (M, g) is conformorphic to a Euclidean n-sphere S^n .

Conjecture II. Let (M, g) be a compact Riemannian n-manifold with constant scalar curvature k. Then $C_0(M, g)$ is essential if and only if k is positive and (M, g) is isometric to a Euclidean n-sphere $S^n(k)$ of radius $1/\sqrt{k}$.

Received October 19, 1970.