THE AXIOM OF SPHERES IN RIEMANNIAN GEOMETRY

DOMINIC S. LEUNG & KATSUMI NOMIZU

In his book on Riemannian geometry [1] Elie Cartan defined the axiom of *r*-planes as follows. A Riemannian manifold M of dimension $n \ge 3$ satisfies the axiom of *r*-planes, where r is a fixed integer $2 \le r < n$, if for each point p of M and any *r*-dimensional subspace S of the tangent space $T_p(M)$ there exists an *r*-dimensional totally geodesic submanifold V containing p such that $T_p(V)$ = S. He proved that if M satisfies the axiom of *r*-planes for some r, then M has constant sectional curvature [1, § 211].

We propose

Axiom of r-spheres. For each point p of M and any r-dimensional subspace S of $T_p(M)$, there exists an r-dimensional umbilical submanifold V with parallel mean curvature vector field such that $p \in V$ and $T_p(V) = S$.

We shall prove

Theorem. If a Riemannian manifold M of dimension $n \ge 3$ satisfies the axiom of r-spheres for some r, $2 \le r < n$, then M has constant sectional curvature.

The special case where r = n - 1 was proved by J. A. Schouten (see [3, p. 180]). In this case the condition of parallel mean curvature vector field simply means constancy of the mean curvature.

1. Preliminaries

Let M be a Riemannian manifold of class C^{∞} , and let V be a submanifold. The Riemannian connections of M and V are denoted by \overline{V} and $\overline{V'}$, respectively, whereas the normal connection (in the normal bundle of V in M) is denoted by $\overline{V^{\perp}}$. The second fundamental form α is defined by

$$abla_X Y =
abla'_X Y + \alpha(X, Y),$$

where X and Y are vector fields tangent to V. On the other hand, for any vector field ξ normal to V, the tensor field A_{ξ} of type (1,1) on V is given by

$$\nabla_X \xi = -A_{\xi}(X) + \nabla_X^{\perp} \xi ,$$

where X is a vector field tangent to V. We have

Received December 7, 1970.